Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 8, pp 1827–1840 | Cite as

Structural, Micromechanical and Tribological Characterization of Zn–Ni Coatings: Effect of Sulfate Bath Composition

  • Faten Nasri
  • Manel Zouari
  • Mohamed Kharrat
  • Maher Dammak
  • Florence Vacandio
  • Marielle Eyraud
Technical Paper
  • 126 Downloads

Abstract

Zn and Zn–Ni alloy coatings were electrodeposited on mild steel from sulfate-based bath containing Sn as additive. The effect of Ni content on the microstructure, morphology, microhardness and the tribological behavior of these coatings were studied and discussed. Adding Sn in the sulfate bath had a significant effect on the surface morphology, particularly on the Zn–8 wt% Ni coatings. By increasing the Ni concentration from 8 to 14 wt%, the X-ray patterns showed that the phase structure of Zn–Ni alloy coatings was changed from η-phase Ni3Zn22 to γ-phase Ni5Zn21. The plastic deformation and delamination were found to be wear mechanisms for the investigated coatings. While the Zn–14 wt% Ni alloys had the best wear resistance, Zn films had the most severe wear volume loss and the highest friction coefficient.

Keywords

Zn–Ni coatings Electrodeposition Sulfate bath Sn Tribological behavior 

Notes

Acknowledgements

The authors gratefully acknowledge the help and support of Professor Mongi Feki from the Laboratory of Materials Engineering and Environment (National Engineering School of Sfax; Sfax; Tunisia).

References

  1. 1.
    Marder A, Progr Mater Sci 45 (2000) 191.CrossRefGoogle Scholar
  2. 2.
    Panagopoulos C N, Lagaris D A, and Vatista P C, Mater Chem Phys 126 (2011) 398.CrossRefGoogle Scholar
  3. 3.
    Boshkov N, Electrochim Acta 51 (2005) 77.CrossRefGoogle Scholar
  4. 4.
    Wasekar N P, Jyothirmayi A, Hebalkar N, and Sundararajan G, Surf Coat Technol 272 (2015) 373.CrossRefGoogle Scholar
  5. 5.
    Ibrahim S, Bakkar A, Ahmed E, and Selim A, Electrochim Acta 191 (2016) 724.CrossRefGoogle Scholar
  6. 6.
    Zelger C, Laumen J, Laskosb A, and Gollas B, Electrochim Acta 213 (106) 208.Google Scholar
  7. 7.
    Fratesi R, Roventi G, Giuliani G, and Tomachuk C R, J. Appl Electrochem 27 (1997) 1088.CrossRefGoogle Scholar
  8. 8.
    Karahan I H, and Guder H S, Trans Inst Met Finish 87 (2009) 155.CrossRefGoogle Scholar
  9. 9.
    Hall D E, Plat Suf Finish 70 (1983) 59.Google Scholar
  10. 10.
    Felloni L, Fratesi R, Quadrini E, and Roventi G, J Appl Electrochem 17 (1987) 574.CrossRefGoogle Scholar
  11. 11.
    Mathias M F, and Chapman T W, J Electrochem Soc 134 (1987) 1408.CrossRefGoogle Scholar
  12. 12.
    Albalat R, Gomez E, Muller C, Sarret M, Valles E, and Pregonas J, J Appl Electrochem 20 (1990) 635.CrossRefGoogle Scholar
  13. 13.
    Younan M M, J Appl Electrochem 30 (2000) 55.CrossRefGoogle Scholar
  14. 14.
    Bajat J B, Petrovic A B, and Maksimovic M D, J Serb Chem Soc 70 (2005) 1427.CrossRefGoogle Scholar
  15. 15.
    Hsu G F, Plat Surf Finish 71 (1984) 52.Google Scholar
  16. 16.
    Roventi G, Bellezze T, and Fratesi R, Electrochim Acta 51 (2006) 2691.CrossRefGoogle Scholar
  17. 17.
    Conde A, Arenas MA, and De Damborene J J, Corros. Sci 53 (2011) 1489.CrossRefGoogle Scholar
  18. 18.
    Ghaziof S, and Gao W, Appl Surf Sci 311 (2014) 635.CrossRefGoogle Scholar
  19. 19.
    Tozar A, and Karahan I H, Appl Surf Sci 318 (2014) 15.CrossRefGoogle Scholar
  20. 20.
    Feng Z, Li Q, Zhang J, Yang P, Song H, and An M, Surf Coat Technol 270 (2015) 47.CrossRefGoogle Scholar
  21. 21.
    Yogesha S, and Chitharangan Hedge A, Trans Ind Inst Met 63 (2010) 841.CrossRefGoogle Scholar
  22. 22.
    ASTM. 2006 F1941-00 Standard Specification for Electrodeposited Coatings on Threaded Fasteners (Unified Inch Screw Threads (UN/UNR). ASTM International, West Conshohocken, PA, 19428-2959,  https://doi.org/10.1520/f1941-07. www.astm.org.
  23. 23.
    Sriraman K R, Strauss H W, Brahimi S, Chromik R R, Szpunar J A, Osborne J H, and Yue S, Surf Coat Technol 56 (2012) 107.Google Scholar
  24. 24.
    Panagopoulos C N, Georgarakis K G, and Agathocleous P E, Tribol Int 36 (2003) 619.CrossRefGoogle Scholar
  25. 25.
    Tafreshi M, Allahkaram S R, and Farhangi H, Mater Chem Phys 183 (2016) 263.CrossRefGoogle Scholar
  26. 26.
    Carpentier L, Caractérisation micromécanique de matériaux composites et anisotropes par indentation instrumentée. Thesis, Ecole Centrale de Lyon (1994).Google Scholar
  27. 27.
    Alfantazi A M, Page J, and Erb U, J Appl Electrochem 26 (1996) 1225.CrossRefGoogle Scholar
  28. 28.
    Qiao X, Li H, Zhao W, and Li D, Electrochim Acta 89 (2013) 771.CrossRefGoogle Scholar
  29. 29.
    Devanathan M A V, Stachurski Z, and Beck W, J Electrochem Soc, 111 (1964) 619.CrossRefGoogle Scholar
  30. 30.
    Bockris J O M, and Koch D F A, J Phys Chem, 65 (1961) 1941.CrossRefGoogle Scholar
  31. 31.
    Alfantazi A M, and Erb U, Mater Sci Eng A 212 (1) (1996) 123.CrossRefGoogle Scholar
  32. 32.
    Archard J F, Appl Phys 24 (1953) 981.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Laboratory of Electromechanical Systems (LASEM), National Engineering School of SfaxUniversity of SfaxSfaxTunisia
  2. 2.Laboratory “Divided Materials, Interface, Reactivity, Electrochemistry” (MADIREL)Aix-Marseille UniversityMarseilleFrance

Personalised recommendations