Transactions of the Indian Institute of Metals

, Volume 71, Issue 7, pp 1771–1779 | Cite as

Experimental Investigation on Electro-codeposition Nickel-Weld Slag Composite Coating

  • M. P. Jenarthanan
  • S. Jeyaraj
  • K. Shunmugesh
Technical Paper


Electro-codeposition process is considered to be an advanced technique for development of composite coatings. In this study, Ni-weld slag composite coatings are prepared from nickel Watts bath using electrodeposition process. It is a novel approach under the utilization of weld slag particles for the preparation of composite coatings which are composed of ceramic patterns. The weld slag particles are embedded in nickel matrix using electrodeposition by adjusting the process parametic conditions. Taguchi L9 orthogonal array is chosen for experimental design by considering the three primary plating parameters, namely current density, temperature of bath and particle concentrations with three levels of each. In order to confirm the deposition, the deposited coatings are examined using optical microscope, SEM micrographs and EDX investigations. The Microhardness of deposits is evaluated using Vickers microhardness tester with the applied testing load of 100-gram force. The direct effects and significances of plating parameters on the microhardness have been explored using the signal to noise ratio, mean effect studies and analysis of variance. The process parameters are ranked by position through the significance studies. The Ni-weld slag particles produces greater microhardness values than pure nickel coating.


Electro-codeposition Nickel-weld slag Taguchi design Microhardness Signal-to-noise ratio 


  1. 1.
    Shi L, Sun C F, Zhou F and Liu W M, Mater Sci Eng A 397 (2005) 190.CrossRefGoogle Scholar
  2. 2.
    Hovestad A and Janssen L J, J Appl Electrochem 25 (1995) 519.CrossRefGoogle Scholar
  3. 3.
    Hovestad A and Janssen L J. Modern Aspects of Electrochemistry Springer, Boston (2005), pp 475–532.Google Scholar
  4. 4.
    Narayan R and Narayana B H, J Electrochem Soc 128 (1981) 1704.CrossRefGoogle Scholar
  5. 5.
    Panek J and Budniok A, Surf Coat Technol 201 (2007) 6478.CrossRefGoogle Scholar
  6. 6.
    Daemi N, Mahboubi F, Alimadadi H, Mater Des 32 (2011) 971.CrossRefGoogle Scholar
  7. 7.
    Subramanian K, Periasamy V M, Pushpavanam M, Ramasamy K, Electrochim Acta 27 (2009) 47-55.CrossRefGoogle Scholar
  8. 8.
    Narasimman P, Pushpavanam M, Periasamy V M, Wear 292-293 (2012) 197.CrossRefGoogle Scholar
  9. 9.
    Shi L, Sun C and Liu W, App Surf Sci 254 (2008) 6880.CrossRefGoogle Scholar
  10. 10.
    Thiemig D and Bund A, Surf Coat Technol 202 (2008) 2976.CrossRefGoogle Scholar
  11. 11.
    Gül H, Kılıç F, Aslan S, Alp A, Akbulut H, Wear 267(2009) 976.CrossRefGoogle Scholar
  12. 12.
    Farrokhzad M A, Saha G C and Khan T I, Surf Coat Technol 235 (2013) 75.CrossRefGoogle Scholar
  13. 13.
    Ramanathan K, Periasamy V M, Pushpavanam M and Natarajan U, Arch Comput Mater Sci Surf Eng 1 (2009) 232.Google Scholar
  14. 14.
    Aruna S T, Roy S, Sharma A, Savitha G and Grips V W, Surf Coat Technol 251 (2014) 201.CrossRefGoogle Scholar
  15. 15.
    Pena-Munoz E, Bercot P, Grosjean A, Rezrazi M and Pagetti J. Surf Coat Technol 107 (1998) 85.CrossRefGoogle Scholar
  16. 16.
    Ramesh C S and Seshadri S K, Wear 255 (2003) 893.CrossRefGoogle Scholar
  17. 17.
    Kuo S L, J Chin Inst Eng 27 (2004) 243-251.CrossRefGoogle Scholar
  18. 18.
    Yop A, Markove V and Granousky Y N, The design of experiments to find optimal conditions, Mir Publishers, Moscow (1975).Google Scholar
  19. 19.
    Graf B, Ammer S, Gumenyuk A and Rethmeier M, Proc CIRP 11 (2013) 245.CrossRefGoogle Scholar
  20. 20.
    Nguyen V H, Ngo T A, Pham H H, Nguyen N P, Trans Nonferrous Met Soc China 23 (2013) 2348.CrossRefGoogle Scholar
  21. 21.
    Aruna S T, Srikanth P V, Ahamad M J, Latha S and Rajam K S, Electrochim Acta 29 (2011) 23.Google Scholar
  22. 22.
    Sivasakthivel P S and Sudhakaran R, Int J Adv Manuf Technol 67 (2013) 2313.CrossRefGoogle Scholar
  23. 23.
    Nitin Wasekar P, Madhavi Latha S, Ramakrishna M, D.S. Rao and Sundararajan G, Mater Des 112 (2016) 140–150.Google Scholar
  24. 24.
    Sribalaji M, Asiq Rahman OS, Arun Kumar P, Suresh Babu K, Nitin P Wasekar, Sundararajan G and Anup Kumar Keshri, Metall Mater Trans A 48 (2017) 501–512.Google Scholar
  25. 25.
    Asiq Rahman OS, Nitin P Wasekar, Sundararajan G and Anup Kumar Keshri, Mater Charact 116 (2016) 1–7.CrossRefGoogle Scholar
  26. 26.
    Stott FH and Ashby DJ, Corros Sci 18 (1978) 183–198.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringSASTRA Deemed UniversityThanjavurIndia
  2. 2.Department of Mechanical EngineeringViswajyothi College of Engineering and TechnologyVazhakulamIndia

Personalised recommendations