Skip to main content
Log in

Formation of ZrO2–SiC Composite Coating on Zirconium by Plasma Electrolytic Oxidation in Different Electrolyte Systems Comprising of SiC Nanoparticles

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Plasma electrolytic oxidation (PEO) coupled with electrophoretic deposition (EPD) was used to fabricate ZrO2/SiC composite coating on the zirconium metal. The PEO–EPD process was carried out in three different electrolyte systems consisting of 5 g/l sodium aluminate or trisodium orthophosphate or sodium metasilicate with 4 g/l SiC nanoparticles. The X-ray diffraction results indicate monoclinic zirconia is the major phase in phosphate and silicate electrolyte while the coating produced in aluminate electrolyte is composed of tetragonal zirconia. The potentiodynamic polarization studies (PDP) indicate that composite coating produced in phosphate + SiC nanoparticle containing electrolyte exhibit superior resistance to corrosion, which can be attributed to the pore-free morphology of the coating. All the PEO–EPD coatings show exceptionally good adhesion strength (Lc  > 40 N). The coating fabricated in phosphate + SiC nanoparticles is found to be the best coating because of its superior resistance to corrosion and reasonably good adhesion strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Raj B, and Mudali U K, Prog Nucl Energ 48 (2006) 283.

    Article  Google Scholar 

  2. Miyake M, Uno M, and Yamanaka S, J Nucl Mater 270 (1999) 233.

    Article  Google Scholar 

  3. Fisher N J, Weckwerth M K, Grandison D A E, and Cotnam B M, Nucl Eng Des 213 (2002) 79.

    Article  Google Scholar 

  4. Sanchez A G, Schreiner W, Duffo G, and Cere S, Appl Surf Sci 257 (2011) 6397.

    Article  Google Scholar 

  5. Leushake U, Krell T, Schulz U, Peters M, Kaysser W A, and Rabin B H, Surf Coat Technol 94–95 (1997) 131.

    Article  Google Scholar 

  6. Brenier R, Mugnier J, and Mirica E, Appl Surf Sci 143 (1999) 85.

    Article  Google Scholar 

  7. Shanmugavelayutham G, Yano S, and Kobayashi A, Vacuum 80 (2006) 1336.

    Article  Google Scholar 

  8. Zhou F Y, Wang B L, Qiu K J, Li H F, Li L, Zheng Y F, and Han Y, Appl Surf Sci 265 (2013) 878.

    Article  Google Scholar 

  9. Klapkiv M D, Povstyana N Y, and Nykyforchyn H M, Mater Sci 42 (2006) 277.

    Article  Google Scholar 

  10. Fatimah S, Kamil M P, Kwon J H, Kaseem M, and Ko Y G, J Alloys Compd 707 (2016) 358.

    Article  Google Scholar 

  11. Hariprasad S, Gowtham S, Arun S, Ashok M, and Rameshbabu N, J Alloys Compd 727 (2017) 698.

    Google Scholar 

  12. Venkateswarlu K, Rameshbabu N, Sreekanth D, Bose A C, Muthupandi V, and Subramanian S, Ceram Int 39 (2013) 801.

    Article  Google Scholar 

  13. Tu W, Cheng Y, Wang X, Zhan T, Han J, and Cheng Y, J Alloys Compd 725 (2017) 199.

    Article  Google Scholar 

  14. Choi J W, Kim G W, Shin K R, Yoo B, and Shin D H, J Alloys Compd 726 (2017) 930.

    Article  Google Scholar 

  15. Sowa M, Woszczak M, Kazek-k A, Dercz G, Korotin D M, Zhidkov I S, and Simka W, Appl Surf Sci 407 (2017) 52.

    Article  Google Scholar 

  16. Parfenov E V, Yerokhin A, Nevyantseva R R, Gorbatkov M V, Liang C J, and Matthews A, Surf Coat Technol 269 (2015) 2.

    Article  Google Scholar 

  17. Cheng Y, Cao J, Peng Z, Wang Q, Matykina E, Skeldon P, and Thompson G E, Electrochim Acta 116 (2014) 453.

    Article  Google Scholar 

  18. Cheng Y, Wu F, Dong J, Wu X, Xue Z, Matykina E, Skeldon P, and Thompson G E, Electrochim Acta 85 (2012) 25.

    Article  Google Scholar 

  19. Cheng Y, and Fan W U, T Nonferr Metal Soc 22 (2012) 1638.

    Article  Google Scholar 

  20. Cheng Y, Wu F, Matykina E, Skeldon P, and Thompson G E Corros Sci 59 (2012) 307.

    Article  Google Scholar 

  21. Zou Z, Xue W, Jia X, Du J, Wang R, and Weng L, Surf Coat Technol 222 (2013) 62.

    Article  Google Scholar 

  22. Sowa M, Dercz G, Suchanek K, and Simka W, Appl Surf Sci 346 (2015) 534.

    Article  Google Scholar 

  23. Arrabal R, Matykina E, Viejo F, Skeldon P, Thompson G E, and Merino M C Appl Surf Sci 254 (2008) 6937.

    Article  Google Scholar 

  24. Matykina E, Arrabal R, Monfort F, Skeldon P, and Thompson G E, Appl Surf Sci 255 (2008) 2830.

    Article  Google Scholar 

  25. Bahramian A, Raeissi K, and Hakimizad A, Appl Surf Sci 351 (2015) 13.

    Article  Google Scholar 

  26. Bai Y, Park I S, Lee S J, Bae T S, Duncan W, Swain M, and Lee M H, Appl Surf Sci 257 (2011) 7010.

    Article  Google Scholar 

  27. Yu L, Cao J, and Cheng Y, Surf Coat Technol 276 (2015) 266.

    Article  Google Scholar 

  28. Nasiri Vatan H, Ebrahimi-kahrizsangi R, and Kasiri-asgarani M, J Alloys Compd 683 (2016) 241.

    Article  Google Scholar 

  29. Lu X, Mohedano M, Blawert C, Matykina E, Arrabal R, and Kainer K U, Surf Coat Technol 307 (2016) 1165.

    Article  Google Scholar 

  30. Aliofkhazraei M, and Rouhaghdam A S, Surf Coat Technol 205 (2011) S57.

    Article  Google Scholar 

  31. Ryong K, Kim Y S, Kim G W, Ko Y G, and Shin D H, Colloids Surf B 131 (2015) 47.

    Article  Google Scholar 

  32. Garvie R C, J Phys Chem 69 (1965) 1238.

    Article  Google Scholar 

  33. Heuer A H, Claussen N, Kriven W M, and Ruhle M, J Am Ceram Soc 65 (1982) 642.

    Article  Google Scholar 

  34. Moros G, Marti M C, Carda J, Tena M A, Escribano P, and Anglada M, J Mater Sci 28 (1993) 5852.

    Article  Google Scholar 

  35. Nagarajan V S, and Rao K J, J Mater Sci 24 (1989) 2140.

    Article  Google Scholar 

  36. Muller E, Oestreich C, Klemm V, Brendler E, Ferkel H, and Riehemann W, Part Part Syst Charact 19 (2002) 169.

    Article  Google Scholar 

  37. Hong J S, De la Torre S D, Miyamoto K, Miyamoto H, and Gao L, Mater Lett 37 (1998) 6.

    Article  Google Scholar 

  38. Yan Y, Han Y, and Huang J, Scr Mater 59 (2008) 203.

    Article  Google Scholar 

  39. K.L. Cheng, The negative charge of nanoparticles, Microchem. J 82 (2006) 119–120.

    Article  Google Scholar 

  40. Cakmat E, Tekin K C, Malayoglu U, and Shrestha S, Surf Coat Technol 204 (2010) 1305.

    Article  Google Scholar 

  41. Nie X, Leyland A, Song H W, Yerokhin A L, Dowey S J, and Matthews A, Surf Coat Technol 116–119 (1999) 1055.

    Article  Google Scholar 

  42. Graeve O A, Shackelford J F, and Doremus R H (Eds.), Ceramic and Glass Materials Structure: Properties and Processing, Springer, New York (2008) p 169.

    Google Scholar 

  43. He Y J,. Winnubst A J A, Schipper D J, Burggraaf A J and Verweij H, Wear 210 (1997) 178.

    Article  Google Scholar 

  44. Chen Y, Nie X, and Northwood D O, Surf Coat Technol 205 (2010) 1774.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the project grants received from the Department of Science and Technology (DST), New Delhi (Ref. No INT/RUS/RFBR/IDIR/P-5/2016) and Russian Foundation for Basic Research (RFBR), Moscow (Ref. No 16-53-48008) under the DST-RFBR inter-disciplinary scientific cooperation programme to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rameshbabu Nagumothu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukumaran, A., Sampatirao, H., Balasubramanian, R. et al. Formation of ZrO2–SiC Composite Coating on Zirconium by Plasma Electrolytic Oxidation in Different Electrolyte Systems Comprising of SiC Nanoparticles. Trans Indian Inst Met 71, 1699–1713 (2018). https://doi.org/10.1007/s12666-018-1306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1306-z

Keywords

Navigation