Skip to main content
Log in

Strain Effect on the Microstructure, Mechanical Properties and Fracture Characteristics of a TWIP Steel Sheet

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Twinning-induced plasticity (TWIP) steels are a highly promising group of steels for the production of complex structural components in cold forming operations for car body manufacturing. In this work, the effect of cold rolling strain on the microstructure, mechanical properties and fracture characteristics of a TWIP steel sheet used for automobile body structure was studied by means of optical microscopy, scanning electron microscopy, electron back-scattered diffraction technique, microhardness measurement, tensile test and fractography. TWIP steel sheets were cold rolled with reductions of 0, 15 and 30%. An increase of the cold rolling strain led to an increase of deformation twinning activity in certain favourably oriented grains and resulted in significant increase in ultimate tensile strength and hardness of TWIP steel. However, the ductility of TWIP steel significantly decreased with increasing degree of cold rolling strain. The increase in the ultimate tensile strength was almost linear with the increase in cold rolling strain. After cold rolling reduction of 30%, the ultimate tensile strength increased by approximately 50%, whereas the elongation decreased by approximately 85%. The size and depth of the dimples in the fracture surface decreased with the increase of the twin boundaries at 30% cold rolling strain, leading to highly limited plasticity through the tensile testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tewary N K, Ghosh S K, Bera S, Chakrabarti D, and Chatterjee S, Mater Sci Eng A 615 (2014) 405.

    Article  Google Scholar 

  2. Grässel O, Krüger L, Frommeyer G, and Meyer L W, Int J Plast 16 (2000) 1391.

    Article  Google Scholar 

  3. Escobar D P, Ferreira De Dafe S S, Verbeken K, and Santos D B, Steel Res Int 87 (2016) 95.

    Article  Google Scholar 

  4. Hickel T, Grabowski B, Körmann F, and Neugebauer J, J Phys Condens Matter 24 (2012) 53202.

    Article  Google Scholar 

  5. Remy L, Pineau A, and Thomas B, Mater Sci Eng 36 (1978) 47.

    Article  Google Scholar 

  6. Vercammen S, Blanpain B, De Cooman B C, and Wollants P, Acta Mater 52 (2004) 2005.

    Article  Google Scholar 

  7. Kim J, Lee S, and De Cooman B C, Scr Mater 65 (2011) 363.

    Article  Google Scholar 

  8. Dumay A, Chateau J, Allain S, Migot S, and Bouaziz O, Mater Sci Eng A 484 (2008) 184.

    Article  Google Scholar 

  9. Frommeyer G, Brüx U, and Neumann P, ISIJ Int 43 (2003) 438.

    Article  Google Scholar 

  10. Monsalve A, De Barbieri F, Gómez M, Artigas A, Carvajal L, Sipos K, Bustos O, and Pérez-Ipiña J, Mater Janeiro 2 (2015) 653.

    Google Scholar 

  11. Shen Y F, Qiu C H, Wang L, Sun X, Zhao X M, and Zuo L, Mater Sci Eng A 561 (2013) 329.

    Article  Google Scholar 

  12. El-danaf E, Kalidindi S R, and Doherty R D, Metall Mater Trans A 30 (1999) 1223.

    Article  Google Scholar 

  13. Allain S, Chateau J, and Bouaziz O, Mater Sci Eng A 389 (2004) 143.

    Article  Google Scholar 

  14. Karaman I, Sehitoglu H, Beaudoin A J, Chumlyakov Y I, Maier H J, and Tome C N, Acta Mater 48 (2000) 2031.

    Article  Google Scholar 

  15. Haase C, Barrales-Mora L A, Molodov D A, and Gottstein G, Metall Mater Trans A Phys Metall Mater Sci 44 (2013) 4445.

    Google Scholar 

  16. Yanushkevich Z, Belyakov A, Kaibyshev R, and Molodov D, IOP Conf Ser Mater Sci Eng 63 (2014) 1.

    Article  Google Scholar 

  17. ASTM E8/E8M standard test methods for tension testing of metallic materials, Annu. B. ASTM Stand. 4 (2010) 1.

  18. Bracke L, Penning J A N, and Akdut N, Metall Mater Trans A 38 (2007) 520.

    Article  Google Scholar 

  19. Gourgues A, Flower H M, and Lindley T C, Mater Sci Technol 16 (2000) 26.

    Article  Google Scholar 

  20. Petrov R, Kestens L, Wasilkowska A, and Houbaert Y, Mater Sci Eng A 447 (2007) 285.

    Article  Google Scholar 

  21. Niendorf T, Rubitschek F, Maier H J, Niendorf J, Richard H A, and Frehn A, Mater Sci Eng A 527 (2010) 2412.

    Article  Google Scholar 

  22. Yang H K, Zhang Z J, and Zhang Z F, Mater Sci Eng A 622 (2015) 184.

    Article  Google Scholar 

  23. Hwang J, Yi I, Son I, Yoo J, Kim B, Zargaran A, and Kim N J, Mater Sci Eng A 644 (2015) 41.

    Article  Google Scholar 

  24. Gutierrez-Urrutia I, and Raabe D, Mater Sci Forum 702703 (2011) 523.

    Article  Google Scholar 

  25. Gutierrez-Urrutia I, Zaefferer S, and Raabe D, Mater Sci Eng A 527 (2010) 3552.

    Article  Google Scholar 

  26. Kumar B R, Das S K, Mahato B, Das A, and Ghosh Chowdhury S, Mater Sci Eng A 454455 (2007) 239.

    Article  Google Scholar 

  27. Saleh A A, Gazder A A, and Pereloma E V, Trans Indian Inst Met 66 (2013) 621.

    Article  Google Scholar 

  28. Hielscher R, Bachmann F, Schaeben H, and Mainprice D, Features of the Free and Open Source Toolbox MTEX for Texture Analysis-Summer School Recrystallization Mechanisms in Materials, Frejus, France (2014).

    Google Scholar 

  29. Lee S Y, Chun Y B, Han J W, and Hwang S K, Mater Sci Eng A 363 (2003) 307.

    Article  Google Scholar 

  30. Yuan X, Chen L, Zhao Y, Di H, and Zhu F, J Mater Process Technol 217 (2015) 278.

    Article  Google Scholar 

  31. Zhong Y, Yin F, Sakaguchi T, Nagai K, and Yang K, Acta Mater 55 (2007) 2747.

    Article  Google Scholar 

  32. Gurao N P, Kumar P, Bhattacharya B, Haldar A, and Suwas S, Metall Mater Trans A Phys Metall Mater Sci 43 (2012) 5193.

    Google Scholar 

  33. Lin P, Palumbo G, Erb U, and Aust K T, Scr Metall Mater 33 (1995) 1387.

    Article  Google Scholar 

  34. Bracke L, Verbeken K, Kestens L, and Penning J, Acta Mater 57 (2009) 1512.

    Article  Google Scholar 

  35. Hou J, Wang J Q, Ke W, and Han E H, Mater Sci Eng A 518 (2009) 19.

    Article  Google Scholar 

  36. Zhang Z M, Wang J Q, Han E H, and Ke W, Nucl Eng Des 241, (2011) 4944.

    Article  Google Scholar 

  37. Ma L, Wei Y, Hou L, and Yan B, J Iron Steel Res Int 21 (2014) 749.

    Article  Google Scholar 

  38. Kusakin P, Belyakov A, Haase C, Kaibyshev R, and Molodov D A, Mater Sci Eng A 617 (2014) 52.

    Article  Google Scholar 

  39. Juan Dai Y, Tang D, Li Mi Z, and Chong Lü J, J Iron Steel Res Int 17 (2010) 53.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Scientific and Technological Research Council of Turkey (TUBITAK) for financially supporting this research (Project No. MAG 213M597).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Aydın.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydın, H., Tutar, M. & Bayram, A. Strain Effect on the Microstructure, Mechanical Properties and Fracture Characteristics of a TWIP Steel Sheet. Trans Indian Inst Met 71, 1669–1680 (2018). https://doi.org/10.1007/s12666-018-1303-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1303-2

Keywords

Navigation