Effect of Annealing Temperature on Punching Shear Strength of Nb-A286 Superalloy
Abstract
In the present research, effects of cold rolling and subsequent annealing on the microstructure and shear response of A286 superalloy were investigated. The present report has begun with a discussion on the alloy when it is cold-worked, with special emphasis on the formation of deformation bands. Next, following an annealing process in the temperature range of 900–1050 °C for 2–20 min, we have proceeded to depict static recrystallization, grain growth and precipitation phenomena. The mechanical properties evolution and the fracture surface analysis showed the occurrence of softening phenomenon in the temperature range of 900–950 °C as a result of either partial or full recrystallization. At 1050 °C, precipitation of Nb-rich phase caused an increase in ultimate shear strength of the alloy. Additionally, shear punch fracture surfaces of the samples annealed at 900–1000 °C represented dimple mode, with grain boundary decohesion being seen to occur at higher temperatures.
Keywords
A286 superalloy Recrystallization and Precipitation Nb-rich phase Shear punch test Fracture surfaces Grain boundary decohesionReferences
- 1.De Tiedra P, Martín Ó, San-Juan M, J Alloys Compd 673 (2016) 231.CrossRefGoogle Scholar
- 2.Seifollahi M, Razavi S, Kheirandish S, Abbasi S, J Mater Eng Perform 22 (2013) 3063.CrossRefGoogle Scholar
- 3.De Cicco H, Luppo M, Raffaeli H, Di Gaetano J, Gribaudo L, Ovejero-García J, Mater Charact 55 (2005) 97.CrossRefGoogle Scholar
- 4.Rho BS, Nam SW, Mater Lett 48 (2001) 49.CrossRefGoogle Scholar
- 5.Choudhury I, El-Baradie M, J Mater Process Technol 77 (1998) 278.CrossRefGoogle Scholar
- 6.Giordani E, Jorge A, Balancin O, Scr Mater 55 (2006) 743.CrossRefGoogle Scholar
- 7.Padilha A F, Plaut R L, Rios P R, ISIJ Int 43 (2003) 135.CrossRefGoogle Scholar
- 8.Barraclough D, Sellars C, Met Sci (2013).Google Scholar
- 9.Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Jensen D J, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D, Mater Today 1 (1998) 14.CrossRefGoogle Scholar
- 10.Seifollahi M, Kheirandish S, Razavi SH, Abbasi SM, Sahrapour P, ISIJ Int 53 (2013) 311.CrossRefGoogle Scholar
- 11.Karthik V, Visweswaran P, Vijayraghavan A, Kasiviswanathan K, Raj B, J Nucl Mater 393 (2009) 425.CrossRefGoogle Scholar
- 12.Janča A, Siegl J, Haušild P, J Nucl Mater 481 (2016) 201.CrossRefGoogle Scholar
- 13.Abedi H, Zarei-Hanzaki A, Biucki M B, Emamy M, Mater Sci Eng A 606 (2014) 360.CrossRefGoogle Scholar
- 14.Alizadeh R, Mahmudi R, Langdon T G, J Mater Res Technol 3 (2014) 228.Google Scholar
- 15.Toloczko M B, Kurtz R J, Hasegawa A, Abe K, J Nucl Mater 307–311 (2002) 1619.CrossRefGoogle Scholar
- 16.Padilha A F, Rios P, ISIJ Int 42 (2002) 325.CrossRefGoogle Scholar
- 17.Bulloch J, Int J Press Vessels Pip 63 (1995) 177.CrossRefGoogle Scholar
- 18.Cowie J G, Azrin M, Olson G B, Metall Trans A 20 (1989) 143.CrossRefGoogle Scholar