60NiTi: A Review of Recent Research Findings, Potential for Structural and Mechanical Applications, and Areas of Continued Investigations

  • Khashayar Khanlari
  • Maziar Ramezani
  • Piaras Kelly
Review Paper
  • 153 Downloads

Abstract

Recent advances in the manufacture and processing of high purity NiTinol 60 (60 wt% Ni–40 wt% Ti) has spurred a renewed interest in the use of this alloy for structural and mechanical component applications. NiTinol 60 (60NiTi) exhibits excellent corrosion resistance, can be hardened to high levels, has a low elastic modulus and extensive elastic range that imparts high mechanical contact load resilience. It is dimensionally stable, has good bio-compatibility, can be machined into precision components and is non-magnetic. This unique set of characteristics make the intermetallic 60NiTi suitable for a wide variety of applications in the marine, medical, aerospace and food processing industries. This article surveys and reviews a broad range of historic and recent publications on 60NiTi to highlight what is known and areas that require further study. In particular, recent results indicate a dichotomy in friction and wear behavior. Under good lubrication (liquid or solid) both friction and wear are low but in dry un-lubricated sliding, wear exceeds that of other materials such as steel that have comparable hardness. This unexpected behavior is proposed as an important topic for future investigations before any of widespread adoption in engineering applications.

Keywords

60NiTi Binary nickel–titanium NiTinol 60 

Notes

Acknowledgements

The authors would like to thank Dr. Christopher DellaCorte, National Aeronautics and Space Administration (NASA), Glenn Research Center, Cleveland, Ohio for his generous technical assistance and continuous support.

References

  1. 1.
    DellaCorte C, in Proc Symp 40th Aerospace Mechanisms Symposium, Cocoa Beach, Florida (2010).Google Scholar
  2. 2.
    DellaCorte C, Adv Sci Technol 89 (2014) 1.CrossRefGoogle Scholar
  3. 3.
    Ingole S, JOM 65 (2013) 792.CrossRefGoogle Scholar
  4. 4.
    DellaCorte C, Noebe R, Stanford M, and Padula S, Presented at the Rolling Element Bearings Symposium, Anaheim, California (2011).Google Scholar
  5. 5.
    DellaCorte C, Pepper S, Noebe R, Hull D, and Glennon G, Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications, Report NASA/TM-2009-215646, NASA Glenn Research Center, Cleveland (2009).Google Scholar
  6. 6.
    Wojcik C, US Patent 7192496 (2007).Google Scholar
  7. 7.
    Mosley M J, and Mavroidis C, J Dyn Syst Meas Contr 123 (2001) 103.CrossRefGoogle Scholar
  8. 8.
    Buehler W J, and Wang F E, Ocean Eng 1 (1968) 105IN7109.Google Scholar
  9. 9.
    Julien G J, US Patent 6422010 (2002).Google Scholar
  10. 10.
    Neupane R, and Farhat Z, Mater Sci Appl 6 (2015) 694.Google Scholar
  11. 11.
    Clayton P, Wear 162–164 (1993) 202.CrossRefGoogle Scholar
  12. 12.
    Qian L, Xiao X, Sun Q, and Yu T, Appl Phys Lett 84 (2004) 1076.CrossRefGoogle Scholar
  13. 13.
    Liu R, and Li D I, Metall Mater Trans A 31A (2000) 2773.CrossRefGoogle Scholar
  14. 14.
    Lin H C, Wu S K, and Yeh C, Wear 249 (2001) 557.CrossRefGoogle Scholar
  15. 15.
    Li D Y, Wear 255 (2003) 617.CrossRefGoogle Scholar
  16. 16.
    Otsuka K, and Ren X, Progr Mater Sci 50 (2005) 511.CrossRefGoogle Scholar
  17. 17.
    Weafer F M, and Bruzzi M S, Int J Fatigue 93 (2016) 148.CrossRefGoogle Scholar
  18. 18.
    Hornbuckle B C, Xiao X Y, Noebe R D, Martens R, Weaver M L, and Thompson G B, Mater Sci Eng A 639 (2015) 336.CrossRefGoogle Scholar
  19. 19.
    DellaCorte C, Moore III L E, and Clifton J S, The Effect of Pre-stressing on the Static Indentation Load Capacity of the Superelastic 60NiTi, Report NASA/TM-2013-216479, NASA Glenn Research Center, Cleveland (2013).Google Scholar
  20. 20.
    Stanford M K, Thomas F, and DellaCorte C, Processing Issues for Preliminary Melts of the Intermetallic Compound 60-NiTiNOL, Report NASA/TM-2012-216044, NASA Glenn Research Center, Cleveland (2012).Google Scholar
  21. 21.
    Stanford M K, Hardness and Microstructure of Binary and Ternary Nitinol Compounds, Report NASA/TM-2016-218946, NASA Glenn Research Center, Cleveland (2016).Google Scholar
  22. 22.
    Hornbuckle B C, Investigation in Phase Stability and Mechanical Attributes in Nickel-Rich Nitinol with and Without Hafnium Additions, Ph D Thesis, The University of Alabama: Alabama, United States (2014).Google Scholar
  23. 23.
    Kim J, and Miyazaki S, Acta Mater 53 (2005) 4545.CrossRefGoogle Scholar
  24. 24.
    Stanford M, Wozniak W A, and McCue T, Addressing Machining Issues for the Intermetallic Compound 60-NITINOL, Report NASA/TM-2012-216027, NASA Glenn Research Center, Cleveland (2012).Google Scholar
  25. 25.
    DellaCorte C, and Wozniak W A, Design and Manufacturing Considerations for Shockproof and Corrosion-Immune Superelastic Nickel-Titanium Bearings for a Space Station Application, Report NASA/TM-2012-216015, NASA Glenn Research Center, Cleveland (2012).Google Scholar
  26. 26.
    Stanford M, Preliminary Investigation of Surface Treatments to Enhance the Wear Resistance of 60-NiTinol, Report NASA-2016-219121, NASA Glenn Research Center, Cleveland (2016).Google Scholar
  27. 27.
    DellaCorte C, The Effect of Indenter Ball Radius on the Static Load Capacity of the Superelasic 60NiTi for Rolling Element Bearings, Report NASA/TM-2014-216627, NASA Glenn Research Center, Cleveland (2014).Google Scholar
  28. 28.
    Stanford M K, Thermophysical Properties of 60-NITINOL for Mechanical Component Applications, Report NASA/TM-2012-216056, NASA Glenn Research Center, Cleveland (2012).Google Scholar
  29. 29.
    DellaCorte C, Moore III L E, and Clifton J S, Static Indentation Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings, Report NASA/TM-2012-216016, NASA Glenn Research Center, Cleveland (2012).Google Scholar
  30. 30.
    Julien G J, US Patent #6886986 (2005).Google Scholar
  31. 31.
    Dehghani K, and Khamei A, Mater Sci Eng A 527 (2010) 684.CrossRefGoogle Scholar
  32. 32.
    Stanford M K, Hot Isostatic Pressing of 60-Nitinol, Report NASA/TM-2015-218884, NASA Glenn Research Center, Cleveland (2015).Google Scholar
  33. 33.
    Stanford M K, Charpy Impact Energy and Microindentation Hardness of 60-NITINOL, Report NASA/TM-2012-216029, NASA Glenn Research Center, Cleveland (2012).Google Scholar
  34. 34.
    DellaCorte C, Stanford M K, and Jett T R, Tribol Lett 57 (2015) 26.CrossRefGoogle Scholar
  35. 35.
    DellaCorte C, and Glennon G, US Patent 8182741 (2012).Google Scholar
  36. 36.
    DellaCorte C, Howard A, Thomas F, and Stanford M, Microstructural and Material Quality Effects on Rolling Contact Fatigue of Highly Elastic Intermetallic NiTi Ball Bearings, Report NASA/TM-2017-219466, NASA Glenn Research Center, Cleveland (2017).Google Scholar
  37. 37.
    Adharapurapu R R, Jiang F, and Vecchio K S, Mater Sci Eng A 527 (2010) 1665.CrossRefGoogle Scholar
  38. 38.
    Benafan O, Garg A, Noebe R D, Skorpenske H D, An K, and Schell N, Intermetallics 82 (2017) 40.CrossRefGoogle Scholar
  39. 39.
    Hornbuckle B C, Noebe R D, and Thompson G B, J Alloys Compd 640 (2015) 449.CrossRefGoogle Scholar
  40. 40.
    Adharapurapu R R, Phase Transformations in Nickel-Rich Nickel-Titanium Alloys: Influenece of Strain-Rate, Temperature, Thermomechanical Treatment and Nickel Composition on the Shape Memory and Superelastic Characteristics, Ph D Thesis, University of California, UC San Diego, United States (2007).Google Scholar
  41. 41.
    Thomas F, The Effect of Various Quenchants on the Hardness and Microstructure of 60-NITINOL, Report NASA/TM-2015-218463, NASA Glenn Research Center (2015).Google Scholar
  42. 42.
    Li D Y, Wear 221 (1998) 116.CrossRefGoogle Scholar
  43. 43.
    Stanford M, Hardness and Second Phase Percentage of Ni-Ti-Hf Compounds After Heat Treatment at 700 °C, Report NASA/TM-2017-219453, NASA Glenn Research Center, Cleveland (2017).Google Scholar
  44. 44.
    Adharapurapu R, and Vecchio K, Exp Mech 47 (2007) 365.CrossRefGoogle Scholar
  45. 45.
    DellaCorte C, and Moore III L E, in Proc Symp 40th Aerosspace Mechanisms, Cocoa Beach, FL, United States (2010).Google Scholar
  46. 46.
    Patil D, Marinack M C, DellaCorte C, and Higgs C F, TRIBOL T 60 (2016) 615.CrossRefGoogle Scholar
  47. 47.
    Qin Q, Wen Y, Wang G, and Zhang L, J Mater Eng Perform 25 (2016) 5167.CrossRefGoogle Scholar
  48. 48.
    Liu R, and Li D, Wear 251 (2001) 956.CrossRefGoogle Scholar
  49. 49.
    Lin H, He J, Chen K, Liao H, and Lin K, Metall Mater Trans A 28 (1997) 1871.CrossRefGoogle Scholar
  50. 50.
    Miyoshi K, Lukco D, and Cytron S J, Oxide Ceramic Films Grown on 55Ni-45Ti for NASA and Department of Defense Applications: Unidirectional Sliding Friction and Wear Evaluation, Report NASA/TM-2004-212979, NASA Glenn Research Center, Cleveland (2004).Google Scholar
  51. 51.
    Zeng Q-f, and Dong G-n, Trans Nonferrous Met Soc China 24 (2014) 354.CrossRefGoogle Scholar
  52. 52.
    Nasehi J, Ghasemi H M, and Abedini M, TRIBOL T 59 (2016) 286.CrossRefGoogle Scholar
  53. 53.
    DellaCorte C, Thomas F, and Leak O, Tribological Evaluation of Candidate Gear Materials Operating Under Light Loads in Highly Humid Conditions, Report NASA/TM-2015-218896, NASA Glenn Research Center, Cleveland (2015).Google Scholar
  54. 54.
    Pepper S V, DellaCorte C, Noebe R D, Hall D R, and Glennon G, Presented at the ESMATS 13 Conference, Vienna, Austria (2009).Google Scholar
  55. 55.
    Pepper S V, DellaCorte C, and Glennon G, Lubrication of Nitinol 60, Report NASA/TM-2010-216331, NASA Glenn Research Center, Cleveland (2010).Google Scholar
  56. 56.
    DellaCorte C, in Proceedings of the ASME/STLE 2009 International Joint Tribology Conference, Memphis, Tennessee (2009), p 293.Google Scholar
  57. 57.
    Zeng Q-f, Zhao X-m, Dong G-n, and Wu H-x, Trans Nonferrous Met Soc China 22 (2012) 2431.CrossRefGoogle Scholar
  58. 58.
    Stott A C, Brauer J I, Garg A, Pepper S V, Abel P B, DellaCorte C, Noebe R D, Glennon G, Bylaska E, and Dixon D A, J Phys Chem C 114 (2010) 19704.CrossRefGoogle Scholar
  59. 59.
    Zeng Q, Dong G, and Martin J M, Sci Rep 6 (2016) 29992.CrossRefGoogle Scholar
  60. 60.
    Zeng Q, and Dong G, Tribol Lett 52 (2013) 47.CrossRefGoogle Scholar
  61. 61.
    Tang W, Metall Mater Trans A 28 (1997) 537.CrossRefGoogle Scholar
  62. 62.
    Kaya I, Smart Mater Struct 25 (2016).Google Scholar
  63. 63.
    White E V, Calkins F T, Mabe J H, and Butler G W, Proceedings of the SPIE: Smart Structures and Materials 6171 (2006) p 617100.Google Scholar
  64. 64.
    Tan L, Biomaterials 24 (2003) 3931.CrossRefGoogle Scholar
  65. 65.
    Ryhanen J, Biocompatibility Evaluation of Nickel-Titanium Shape Memory Metal Alloy, Ph D Thesis, University of Oulu, Finland (1999).Google Scholar
  66. 66.
    Khanlari K, Ramezani M, Hayat M, Kelly P, Cao P, and Neitzert T, MATEC Web of Conferences 109 (2017) p 01002.CrossRefGoogle Scholar
  67. 67.
    Bolelli G, Bonferroni B, Laurila J, Lusvarghi L, Milanti A, Niemi K, and Vuoristo P, Wear 276 (2012) 29.CrossRefGoogle Scholar
  68. 68.
    Gialanella S, Ischia G, and Straffelini G, J Mater Sci 43 (2008) 1701.CrossRefGoogle Scholar
  69. 69.
    Smialek J L, Garg A, Rogers R B, and Noebe R D, Metall Mater Trans A 43 (2012) 2325.CrossRefGoogle Scholar
  70. 70.
    Firstov G, Vitchev R, Kumar H, Blanpain B, and Van Humbeeck J, Biomaterials 23 (2002) 4863.CrossRefGoogle Scholar
  71. 71.
    Wu S K, Chu C L, and Lin H C, Surf Coat Technol 92 (1997) 206.CrossRefGoogle Scholar
  72. 72.
    Julien G J, US Patent 6454016 (2002).Google Scholar
  73. 73.
    Julien G J, US Patent 6267402 (2001).Google Scholar
  74. 74.
    DellaCorte C, in Proc Symp 43rd Aerospace Mechanisms, (NASA/CP-2016-219090) (2016).Google Scholar
  75. 75.
    Bahraminasab M, and Jahan A, Mater Des 32 (2011) 4471.CrossRefGoogle Scholar
  76. 76.
    Elloy M A, Wright J T M, and Cavendish M E, Acta Orthop Scand 47 (2009) 193.CrossRefGoogle Scholar
  77. 77.
    Shwartsmann C, Boschi L, Boschi L, Ramiro G, and Yepez A, Rev Bras Ortop 47 (2012) 154.CrossRefGoogle Scholar
  78. 78.
    Hermawa H, Ramdan D, and Djuansjah J, in Biomedical Engineering-From Theory to Applications, CHPT 17 (2011).Google Scholar
  79. 79.
    Matassi F, Botti A, Sirleo L, Carulli C, and Innocenti M, Clin Cases Miner Bone Metab 10(2) (2013) 111.Google Scholar
  80. 80.
    Ni W, Cheng Y-T, Lukitsch M, Weiner A M, Lev L C, and Grummon D S, Wear 259 (2005) 842.CrossRefGoogle Scholar
  81. 81.
    Alcala J, Barone A, and Anglada M, Acta Mater 48 (2000) 3451.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringAuckland University of TechnologyAucklandNew Zealand
  2. 2.Department of Engineering ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations