Skip to main content
Log in

Synthesis of Metallic and Intermetallic Matrix Composites Reinforced by Alumina by Reaction in NiO/Al Mixtures

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Present study concerns a reduction of nickel oxide by aluminum via mechanical alloying. Essentially, the reaction products depend on two parameters: the milling time and the molar ratio of elementary powders. This reaction between the starting NiO–Al powders, which takes place during the high-energy ball milling, makes it possible to produce nickel matrix composites reinforced by alumina particles. For the NiO/Al molar ratio of 3/2, the synthesis reaction begins after 4 h of milling time while for a ratio of 3/3, it ends after 2 h forming Ni–Al2O3 composite. Furthermore, changing the NiO/Al ratio to 3/4 and 3/5, allows generation of different phases, where the excess Al reacts with Ni already produced to form NixAly intermetallic matrix reinforced with Al2O3 particles. Due the low apparent density of the green compact, a sintering treatment is necessary to densify the material. This process has been carried out at 800 and 1200 °C under argon atmosphere. Experimental results show that the milling time and starting ratio of NiO/Al powders have an important effect on the reduction reaction of NiO by Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Huang B, Ishihara K N, and Shingu P H, Mater Sci Eng A 231 (1997).

  2. Nguyen H-V, Kim J-S, Kwon Y-S, and Kim J-C, J Mater Sci 114 (2009).

  3. He L, and Ma E, Nanostruct Mater 7 (1996).

  4. Zhang D L, Prog Mat Sci 49 (2004).

  5. Suryanarayana C, and Al-Aqeeli N, Prog Mat Sci 58 (2013).

  6. Arami H, and Simchi A, Mater Sci Eng A 464 (2007).

  7. Khodaei M, Enayati M H, and Karimazdeh F, J Alloys Compd 467 (2009).

  8. Mousavi T, Karimzadeh F, and Abbasi M H, J Alloys Compd 467 (2007).

  9. Choi C-J, J Mater Process Technol 104 (2000).

  10. Rafiei M, Enayati M H, and Karimzadeh F, J Powder Technol 253 (2014).

  11. Fan R-H, Lu H-L, Sun K-N, Wang W-X, and Yi X-B, Thermochim Acta 440 (2006).

  12. Cervantes O G, Kuntz J D, Gash A E, and Munir Z A, Combust Flame 158 (2011).

  13. Zha M, Wang H Y, Li S T, Li S L, Guan Q L, and Jiang Q C, J Mater Chem Phys 114 (2009).

  14. Valliappan S, Swiatkiewicz J, and Puszynski J A, J Powder Technol 156 (2005).

  15. Schicker S, Garcia D E, Bruhn J, Janssen R, and Claussen N, J Acta Mater 46 (1998).

  16. Subramanian R, McKamey C G, Schneibel J H Buck L R, and Menchhofer P A, Mater Sci Eng A 254 (1998).

  17. Tuan W H, Chou W B, You H C, and Chang S T, J Mater Chem Phys 56 (1998).

  18. Anvari S Z, Karimazdeh F, J Alloys Compd 447 (2009).

  19. Zhu H X, and Abbaschian R, Mater Sci Eng A 282 (2000).

  20. Li J, Li F, Hu K, J Mater Process Technol 147 (2004).

  21. Enayati M H, Karimazdeh F, and Anvari S Z, J Mater Process Technol 200 (2008).

  22. Salehi I, Kapoor A, and Mutton P, Int J Fatigue 33 (2011).

  23. Udhayabanua V, Ravi K R, and Murty B S, J Alloys Compd 509 (2011).

  24. Chmielewski M, Nosewicz S, Pietrzak K, Rojek J, Strojny-Nędza A, Mackiewicz S, and Dutkiewicz J, J Mater Eng Perform 23 (2014).

  25. Yu H B, Zhang D L, Chen Y Y, Cao P, and Gabbitas B, J Alloys Compd 474 (2009).

  26. Azimi A, Shukuhfar A, and Zolriasatein A, Mater Sci Eng A 595 (2014).

  27. Rahaei M B, and Dechang J, J Eng Fract Mech 132 (2014).

  28. Zhang K, Petrantoni M, and Rossi C, J Proc PowerMEMS (2008).

  29. Gaffet E, and Le Caër G, Encycl Nanosci Nanotechnol 5 (2004).

  30. Nechiche M, Gauthier-Brunet V, Mauchamp V, Joulain A, Cabioc’h T, Milheta X, Chartiera P, and Dubois S, J. Eur Ceram Soc 37 (2017).

  31. Wolski K, Le Caer G, Delcroix P, Fillit R, Thevenot F, and Le Coze J, Mater Sci Eng A 207 (1996).

  32. Siqueira J R R, Simoes A Z, Stojanovic B D, Paiva-Santos C O, Santos L P S, Longo E, and Varela J A, Ceram Int J 33 (2007).

  33. Suryanarayana C, Prog Mat Sci 46 (2001).

  34. Oleszak D, J Mater Sci 39 (2004).

  35. Fogagnolo J B, Pallone E M J A, Martin D R, Kiminami C S, Bolfarini C, and Botta W J, J Alloys Compd 471 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mameri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mameri, A., Azem, S. & Bilek, A. Synthesis of Metallic and Intermetallic Matrix Composites Reinforced by Alumina by Reaction in NiO/Al Mixtures. Trans Indian Inst Met 71, 727–736 (2018). https://doi.org/10.1007/s12666-017-1205-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1205-8

Keywords

Navigation