Skip to main content

Advertisement

Log in

Laser Additive Manufactured Ti–6Al–4V Alloy: Heat Treatment Studies

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The effect of heat treatment on microstructure and mechanical behaviours of direct metal laser sintered Ti–6Al–4V samples have been studied. Rectangular parts were built in two different directions; vertical and horizontal and subjected to two different heat treatment cycles: above β transus and below β transus with air cooling. Surface characteristics, microstructural examination and mechanical properties have been investigated. Below β transus treatment creates a modification in the surface morphology with a fine dimple network. Above β transus treatment leads to extensive grain growth at the middle section of the vertically build component thereby increasing its microhardness. Both the selected heat treatment cycles significantly reduces the tensile strength and improves the elongation when compared to as-sintered material. However, below transus temperature treated vertical built specimen results in optimum combination of tensile strength (1124 MPa) and elongation (20%). Higher coefficient of friction has been recorded for specimens after heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kumar A, Mandal S, Barui S, Vasireddi R, Gbureck U, Gelinsky M, and Basu B, Mat Sci Eng R 103 (2016) 1.

    Article  Google Scholar 

  2. Huang R, Riddle M, Graziano D, Warren J, Das S, Nimbalkar S, Cresko J, and Masanet E, J Clean Prod 135 (2015) 1559.

    Article  Google Scholar 

  3. Ho K H, and Newman S T, Int J Mach Tool Manu 43 (2003) 1287.

    Article  Google Scholar 

  4. Fantini M, De Crescenzio F, Ciocca L, and Persiani F, Rapid Prototyping J 21 (2015) 705.

    Article  Google Scholar 

  5. Froes F H, and Dutta B, Adv Mat Res 1019 (2014) 19.

    Google Scholar 

  6. Erhard B, and Daniel G, Mater Lett 81 (2012) 84.

    Article  Google Scholar 

  7. Huang Q, Liu X, Yanh X, Zhang R, Shen Z, and Feng Q, Front Mater Sci 9 (2015) 373.

    Article  Google Scholar 

  8. Becker T H, Beck M C, and Scheffer C, S Afr J Ind Eng 26 (2015) 1.

    Google Scholar 

  9. Vrancken B, Thijs L, Kruth J P, and Humbeeck J V, J Alloys Compd 541 (2012) 177.

    Article  Google Scholar 

  10. Bernd B, Erhard B, and Omer B, J Mater Process Tech 211 (2011) 1146.

    Article  Google Scholar 

  11. Wu S Q, Lu Y J, Gan Y L, Huang T T, Zhao C Q, Lin J J, Guo S J, and Lin X, J Alloys Compd 672 (2016) 643.

    Article  Google Scholar 

  12. Chunze Y, Liang H, Hussein A, and Philippe Y, J Mech Behav Biomed 51 (2015) 61.

    Article  Google Scholar 

  13. Ma X, Li F, Li J, Cao J, Li P, and Dong J, J Mater Eng Perform 24 (2015) 3761.

    Article  Google Scholar 

  14. Zhang S, Li J, Kou H, Yang J, Yang G, and Wang J, J Mater Process Tech 227 (2016) 281.

    Article  Google Scholar 

  15. Filip R, Kubiak K, Ziaja W, and Sieniawski J, J Mater Process Tech 133 (2003) 84.

    Article  Google Scholar 

  16. X. H. Wang, M. Zhang, Z. D. Zou and S. Y. Qu, Mater Sci Technol 22 (2006) 193.

    Article  Google Scholar 

  17. El‐Labban H F, Mahmoud E R I, Al‐Wadai H, Adv Prod Eng Manag 9 (2014) 159.

    Google Scholar 

  18. Tamura M, and Kubo H, Surf Coat Technol 49 (1991) 194.

    Article  Google Scholar 

  19. Dai J, Zhu J, Chen C, and Weng F, J Alloys Compd 685 (2016) 784.

    Article  Google Scholar 

  20. Vilaro T, Colin C, and Bartout J D, Metall Mater Trans A 42 (2011) 3190.

    Article  Google Scholar 

  21. Zhao X, Li S, Zhang M, Liu Y, Sercombe T B, Wang S, Hao Y, Yang R, and Murr L E, Mater Design 95 (2016) 21.

    Article  Google Scholar 

  22. Ilie F, and Covaliu C, Lubricants 4 (2016) 12.

    Article  Google Scholar 

  23. Elango E, and Raghunath B K, Procedia Eng 64 (2013) 671.

    Article  Google Scholar 

  24. Glascott J, Stott FH and wood GC, Oxid Met 24 (1985) 99.

    Article  Google Scholar 

  25. Cho D-H, Jia J and Lee Y-Z, Tribol T 58 (2014) 44.

    Article  Google Scholar 

Download references

Acknowledegment

The authors are grateful to Metal casting station, University of Johannesburg, South Africa for funding the Ti–6Al–4V parts manufacturing at Central University of technology, South Africa and Tshwane University of Technology, South Africa for providing its testing facility. Dr B. Ravishankar, Associate Professor, Department of Metallurgy, National Institute of Technology, Trichy, India is greatly acknowledged for sharing his expertise in revising this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chandramohan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandramohan, P., Bhero, S., Varachia, F. et al. Laser Additive Manufactured Ti–6Al–4V Alloy: Heat Treatment Studies. Trans Indian Inst Met 71, 579–587 (2018). https://doi.org/10.1007/s12666-017-1190-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1190-y

Keywords

Navigation