Skip to main content

Advertisement

Log in

Impulse Pressure Assisted Diffusion Bonding of Low Carbon Steel Using Silver Interlayer

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present study, impulse pressure assisted diffusion bonding of low carbon steel was carried out using silver interlayer. To study the influence of input process parameters namely bonding temperature (T), maximum pulse pressure (P), and number of pulses (N), experiments of diffusion bonding were conducted according to the Taguchi L9 orthogonal array. To reveal the typical bond interface characteristics, selected samples were examined by scanning electron microscopy (FESEM) equipped with energy dispersive spectroscopy (EDS). The EDS analysis revealed a diffusion affected zone at the interface due to the diffusion of silver and iron across the interface. Lap joints were developed to measure the shear strength of the diffusion bonds. The optimum level of bonding temperature, maximum pulse pressure and number of pulses (875 °C, 10 MPa and 10 pulses) were identified. The ANOVA results indicated that bonding temperature had the highest statistical effect of 66.37% on shear strength followed by number of pulses and maximum pulse pressure. The fracture surface of the lap joints was also examined by FESEM and X-ray diffraction analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Çam G, and Koçak M, Int Mat Rev 43 (1998) 1.

    Article  Google Scholar 

  2. Kazakov N F, Diffusion Bonding of Materials, Mir Publishers, Moscow, (1985).

    Google Scholar 

  3. Masahashi N, and Hanada S, Mater Trans 46 (2005) 1651.

    Article  Google Scholar 

  4. Çetin M, Proc Inst Mech Eng Part B J Eng Manuf 225 (2016) 543.

    Article  Google Scholar 

  5. Ravisankar B, Krishnamoorthi J, Ramakrishnan S S, and Angelo P C, J Mater Process Technol 209 (2009) 2135.

    Article  Google Scholar 

  6. Zhang, Li H, and Li M Q, Sci Technol Weld Join 20 (2015) 115.

    Article  Google Scholar 

  7. Noh S, Kasada R, and Kimura A, Acta Mater 59 (2011) 3196.

    Article  Google Scholar 

  8. Li S X, Xuan F Z, Tu S T, and Yu S R, Mater Sci Eng A 491 (2008) 488.

    Article  Google Scholar 

  9. Atabaki M M, J Mater Eng Perf 21 (2012) 1040.

    Google Scholar 

  10. Kundu S, Ghosh M, Laik A, Bhanumurthy K, Kale G B, and Chatterjee S, Mater Sci Eng A 407 (2005) 154.

    Article  Google Scholar 

  11. Du Y C, and Shiue R K, J Mater Process Technol 209 (2009) 5161.

    Article  Google Scholar 

  12. Torun O, Karabulut A, Baksan B, Çelikyürek I, Mater Des 29 (2008) 2043.

    Article  Google Scholar 

  13. Zhou X, Dong Y, Liu C, Liu Y, Yu L, Chen J, Li H, and Yang J, Mater Des 88 (2015) 1321.

    Article  Google Scholar 

  14. Atasoy E, and Kahraman N, Mater Charact 9 (2008).

  15. Rahman A H M E, and Cavalli M N, Mater Sci Eng A 527 (2010) 5189.

    Article  Google Scholar 

  16. Zakipour S, Samavatian M, Halvaee A, Amadeh A, and Khodabandeh A, Mater Lett 142 (2015) 168.

    Article  Google Scholar 

  17. Han J, Sheng G M, Zhou X L, and Sun J X, ISIJ Int 49 (2009) 1200.

    Article  Google Scholar 

  18. Yuan X, Tang K, Deng Y, Luo J, and Sheng G, Mater Des 52 (2013) 359.

    Article  Google Scholar 

  19. Yongqiang D, Guangmin S, and Lijing Y, Rare Met Mater Eng 44 (2015) 1041.

    Article  Google Scholar 

  20. Balasubramanian M, J Mat Des 77 (2015) 161.

    Article  Google Scholar 

  21. Wang F L, Sheng G M, and Deng Y Q, Rare Met 35 (2016) 331.

    Article  Google Scholar 

  22. Barrena M I, Matesanz L, and de Salazar J M G, Mater Charact 60 (2009) 1263.

    Article  Google Scholar 

  23. Balasubramanian M, Int J Adv Manuf Technol 82 (2015).

  24. Tashi R S, Mousavi S A A A, and Atabaki M M, Mater Des 54 (2014) 161.

    Article  Google Scholar 

  25. Yuan X J, Sheng G M, Qin B, Huang W Z, and Zhou B, Mater Charact 59 (2008) 930.

    Article  Google Scholar 

  26. Mahapatra S S, and Patnaik A, Int J Adv Manuf Technol 34 (2007) 911.

    Article  Google Scholar 

  27. Jayaraman M, Sivasubramanian R, Balasubramanian V, and Lakshminarayanan A K, J Sci Ind Res 68 (2009) 36.

    Google Scholar 

  28. Peelamedu R D, Roy R, and Agrawal D K, Mater Lett 55 (2002) 234.

    Article  Google Scholar 

  29. Meshram S D, and Reddy G M, Def Technol 11 (2015) 292.

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the Ministry of Steel India under Grant No. 11(1)/SDF/2010-TW to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Sharma.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, G., Tiwari, L. & Dwivedi, D.K. Impulse Pressure Assisted Diffusion Bonding of Low Carbon Steel Using Silver Interlayer. Trans Indian Inst Met 71, 11–21 (2018). https://doi.org/10.1007/s12666-017-1136-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1136-4

Keywords

Navigation