Skip to main content
Log in

A Study on Micro-hardness and Tribological Behaviour of Nano-WC–Co–Cr/Multi-walled Carbon Nanotubes Reinforced AZ91D Magnesium Matrix Surface Composites

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present study, AZ91-D magnesium alloy based metal matrix surface composites (MMSCs) were fabricated by multi-pass friction stir processing (FSP) technique. The nano-WC–Co–Cr and multi-walled carbon nanotubes (MWCNTs) as reinforcements were added by multi-pass FSP using grooving method. The effect of different volume fractions (%) of nano-reinforcements on the micro-structure, micro-hardness and tribological properties of MMSCs were studied. The AZ91-D parent material showed poor micro-hardness and tribological performance which could be attributed to coarse grain microstructure and secondary β-phase distributed on the grain boundaries. On the other hand, friction stir processed material and fabricated MMSCs exhibited improved micro-hardness and tribological properties. This improved performance could be attributed to the homogeneous dispersion of reinforcement particles, dynamically recrystallized ultra-fine structure, and the dissolution of secondary β-phase. Among the different nano-MMSCs reinforced with pure MWCNTs, pure WC–Co–Cr and its hybrid. The WC–Co–Cr/MWCNTs (1:1 ratio) hybrid composite exhibited a maximum average micro-hardness of 118.05 HV, minimum wear rate of 0.45 × 10−3 mm3/m. But the minimum coefficient of friction (COF) of 0.32 was obtained in case of pure MWCNTs reinforced MMSC. Wear mechanisms like micro-cutting, micro-ploughing, delamination etc. were also evident from the SEM images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kulekci M K, Int J Adv Manuf Technol 39 (2008) 851.

    Article  Google Scholar 

  2. Eliezer D, Aghion E, Works D S, and House P, Adv Perform Mater 212 (1998) 201.

    Google Scholar 

  3. Sugimoto K, Niiya K, Okamoto T, and Kishitake K, Trans Japan Inst Met 18 (1977) 277.

    Article  Google Scholar 

  4. Darras B M, Khraisheh M K, Abu-Farha F K, and Omar M A, J Mater Process Technol 191 (2007) 77.

    Article  Google Scholar 

  5. Shen M J, Wang X J, Ying T, Wu K, and Song W J, J Alloys Compd 686 (2016) 831.

    Article  Google Scholar 

  6. Shen M J, Wang X J, Zhang M F, Zheng M Y, and Wu K, Compos Sci Technol 118 (2015) 85.

    Article  Google Scholar 

  7. Deng K, Wang C, Shi J, Wu Y, and Wu K, Mater Chem Phys 134 (2012) 581.

    Article  Google Scholar 

  8. Deng K K, Wang X J, Wang C J, Shi J Y, Hu X S, and Wu K Mater Sci Eng A 553 (2012) 74.

    Article  Google Scholar 

  9. Daniel B S S, Murthy V S R, and Murty G S, J Mater Process Technol 68 (1997) 132.

    Article  Google Scholar 

  10. Kaw A K, Mechanics of Composite Materials Technology and Engineering, 2nd ed., Taylor and Francis (CRC Press), Florida (2005), p 490.

  11. Bauri R, Yadav D, and Suhas G, Mater Sci Eng A 528 (2011) 4732.

    Article  Google Scholar 

  12. Arora H S, Singh H, and Dhindaw B K Int J Adv Manuf Technol 61 (2012) 1043.

    Article  Google Scholar 

  13. Puviyarasan M, and Kumar V S S, Procedia Eng 38 (2012) 1094.

    Article  Google Scholar 

  14. Mishra R S, Ma Z Y, and Charit I, Mater Sci Eng A 341 (2003) 1.

    Google Scholar 

  15. Morisada Y, Fujii H, Nagaoka T, and Fukusumi M, Mater Sci Eng A 433 (2006) 50.

    Article  Google Scholar 

  16. Asadi P, Faraji G, Masoumi A, and Givi M K B, Metall Mater Trans A Phys Metall Mater Sci 42 (2011) 2820.

    Article  Google Scholar 

  17. Lee C J, Huang J C, and Hsieh P J, Scr Mater 54 (2006) 1415.

    Article  Google Scholar 

  18. Goh C S, Wei J, Lee L C, and Gupta M, Mater Sci Eng A 423 (2006) 153.

    Article  Google Scholar 

  19. Faraji G, and Asadi P, Mater Sci Eng A 528 (2011) 2431.

    Article  Google Scholar 

  20. Lu D, Jiang Y, amd Zhou R, Wear 305 (2012) 1.

    Article  Google Scholar 

  21. Thakur L, Arora N, Jayaganthan R, and Sood R, Appl Surf Sci 258 (2011) 1225.

    Article  Google Scholar 

  22. Ceschini L, Dahle A, Gupta M, Jarfors A E, Jayalakshmi S, Morri A, Rotundo F, Toschi S, and Singh R A, Aluminum and Magnesium Metal Matrix Nanocomposites, 1st ed., Springer, Singapore (2017), p 42.

  23. Azizieh M, Kokabi A. H, and Abachi P Mater Des 32 (2011) 2034.

    Article  Google Scholar 

  24. Chai F, Zhang D, and Li Y, Materials (Basel) 7 (2014) 1573.

    Article  Google Scholar 

  25. Zhang D, Wang S, Qiu C, and Zhang W, Mater Sci Eng A 556 (2012) 100.

    Article  Google Scholar 

  26. Zhang D, Xiong F, Zhang W, Qiu C, and Zhang W, Trans Nonferrous Met Soc China 21 (2011) 1911.

    Article  Google Scholar 

  27. Hashemi R, and Hussain G, Wear 324–325 (2015) 45.

    Article  Google Scholar 

  28. Smith P A, and Yeomans J A, Mater Sci Eng 2 (2009) 133.

    Google Scholar 

  29. Archard J F, J Appl Phys 24 (1953) 981.

    Article  Google Scholar 

  30. Moghadam A D, Omrani E, Menezes P L, and Rohatgi P K, Compos Part B Eng 77 (2015) 402.

    Article  Google Scholar 

  31. Kato K, Wear 241 (2000) 151.

    Article  Google Scholar 

  32. Sharma S C, Anand B, and Krishna M, Wear 241 (2000) 33.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Welding Research Laboratory, IIT Roorkee, Roorkee, India for providing sophisticated mechanical and metallurgical testing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neharika Bhadouria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhadouria, N., Kumar, P., Thakur, L. et al. A Study on Micro-hardness and Tribological Behaviour of Nano-WC–Co–Cr/Multi-walled Carbon Nanotubes Reinforced AZ91D Magnesium Matrix Surface Composites. Trans Indian Inst Met 70, 2477–2483 (2017). https://doi.org/10.1007/s12666-017-1111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1111-0

Keywords

Navigation