Skip to main content
Log in

Interfacial IMC Layer and Tensile Properties of Ni-Reinforced Cu/Sn–0.7Cu–0.05Ni/Cu Solder Joint: Effect of Aging Temperature

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript


Thermal aging behavior on the intermetallic compounds (IMCs) layer and mechanical properties of Cu/Sn–0.7Cu/Cu and Cu/Sn–0.7Cu–0.05Ni/Cu joints has been investigated from aging temperature of 60–180 °C for 100 h. Layer thickness increases as aging temperature rose for both the joints. Mechanical properties deteriorates with increase in aging temperature. After aging at 180 °C, any signs of ductile fracture surface with a large amount of dimples are absent. Instead, an intergranular fracture surface is obtained for both the joints, indicating that the process transformes from ductile to brittle behavior. However, brittle Cu3Sn layer is observed between Cu6Sn5 layer and Cu substrate for Cu/Sn–0.7Cu/Cu joint after aging at 60 °C, while (Cu, Ni)3Sn IMC layer is detected until aged at 140 °C for Cu/Sn–0.7Cu–0.05Ni/Cu. Compared with Cu/Sn–0.7Cu/Cu joint, the interfacial morphology directly changes from scallop-shaped into layer-shaped structure with lower Gibbs free energy, and the layer thickness is obviously suppressed after addition of Ni particle. Excellent mechanical properties, including UTS, elongation, and hardness, are obtained for Cu/Sn–0.7Cu–0.05Ni/Cu because of the slight increase in layer thickness and dense layer-shaped interfacial morphology. Thermal aging reliability is enhanced for the Cu/Sn–0.7Cu–0.05Ni/Cu solder joint after doping with 0.05 wt% Ni particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others


  1. Choudhury S F, and Ladani L, J Electron Packag 137 (2015) 041003.

    Article  Google Scholar 

  2. Pratt R E, Stromswold E I, and Quesnel D J, J Electron Mater 23 (1994) 375.

    Article  Google Scholar 

  3. Ghosh G, Acta Mater 48 (2000) 3719.

    Article  Google Scholar 

  4. An T, and Qin F, J Electron Packag 138 (2016) 011002.

    Article  Google Scholar 

  5. Zhao J, Qi L, Wang X M, and Wang L, J Alloys Compd 375 (2004) 196.

    Article  Google Scholar 

  6. Hamada N, Uesugi T, Takigawa Y, and Higashi K, J Alloys Compd 527 (2012) 226.

    Article  Google Scholar 

  7. Xue P, Xue S B, Shen Y F, Long F, and Zhu H, J Electron Mater 43 (2014) 3404.

    Article  Google Scholar 

  8. Yen Y W, Liou W K, Chen W C, and Chiu C W, J Alloys Compd 574 (2013) 490.

    Article  Google Scholar 

  9. Lin H J, and Chuang T H, J Electron Mater 39 (2009) 200.

    Article  Google Scholar 

  10. Lu H Y, Balkan H, and Ng K Y S, J Mater Sci Mater Electron 17 (2006) 171.

    Google Scholar 

  11. El-Daly A A, Fawzy A, Mansour S F, and Younis M J, J Mater Sci Mater Electron 24 (2013) 2976.

    Google Scholar 

  12. Chen W X, Xue S B, Wang H, and Hu Y H, J Mater Sci Mater Electron 21 (2009) 779.

    Google Scholar 

  13. Luo D X, Xue S B, and Liu S, J Mater Sci Mater Electron 25 (2014) 5195.

    Google Scholar 

  14. Nishikawa H, Piao J Y, and Takemoto T, J Electron Mater 35 (2006) 1127.

    Article  Google Scholar 

  15. Hammad A E, Mater Des 50 (2013) 108.

    Article  Google Scholar 

  16. Silva B L, Cheung N, Garcia A, and Spinelli J E, Mater Lett 142 (2015) 163.

    Article  Google Scholar 

  17. Yang L, Ge J G, Zhang Y C, Dai J, and Jing Y F, J Mater Sci Mater Electron 26 (2015) 613.

    Google Scholar 

  18. Fouzder T, Shafiq I, Chan Y C, Sharif A, and Yung W K C, J Alloys Compd 509 (2011) 1885.

    Article  Google Scholar 

  19. Kim S H, and Yu J, J Mater Res 25 (2011) 1854.

    Article  Google Scholar 

  20. Shen J, Pu Y, Wu D, Tang Q, and Zhao M, J Mater Sci Mater Electron 26 (2014) 1572.

    Google Scholar 

  21. Tu K N, Lee T Y, Jang J W, Li L, Frear D R, Zeng K, and Kivilahti J K, J Appl Phys 89 (2001) 4843.

    Article  Google Scholar 

  22. Nogita K, and Nishimura T, Scr Mater 59 (2008) 191.

    Article  Google Scholar 

  23. Liu W, Wang Y, Ma Y, Yu Q, and Huang Y, Mater Sci Eng A 651 (2016) 626.

    Article  Google Scholar 

  24. Nogita K, Intermetallics 18 (2010) 45.

    Article  Google Scholar 

Download references


This research was financially supported by the Natural Science Foundation of China (Grant No. 51401037), the Science and Technology Program of Jiangsu Province of China (Grant No. BK20141228), the Science and Technology Program of Suzhou (Grant Nos. SYG201421, SYG201348, SYG201251), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant Nos. 14KJB430001, 13KJB430001), the Scientific Research Project of Changshu Institute of Technology (JXK2014003), and Jiangsu Key Laboratory of Large Engineering Equipment Detection and Control (Grant No. JSKLEDC201301).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Li Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Ge, J., Zhang, Y. et al. Interfacial IMC Layer and Tensile Properties of Ni-Reinforced Cu/Sn–0.7Cu–0.05Ni/Cu Solder Joint: Effect of Aging Temperature. Trans Indian Inst Met 70, 2429–2439 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: