Skip to main content
Log in

Synthesis of Copper Metal Matrix Hybrid Composites Using Stir Casting Technique and Its Mechanical, Optical and Electrical Behaviours

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

New kind of MMCs have been developed using the economical stir casting technique, where pure copper is taken as matrix and alumina (Al2O3) of grade 6, zirconia (ZrO2), tungsten carbide (WC) and chromium (Cr) are utilized as reinforcements. The developed hybrid composites are characterized through HR-SEM, XRD to identify the phases of the materials. However, EDAX is done to reveal the atomic and weight percentage of reinforced elements present in the composites. Brinell hardness, compressive strength and tensile strength of the Al2O3 based developed hybrid composites show much better results compared to ZrO2 based hybrid composites and its matrix. This is attributed to the particle strengthening and load transfer effect of harder Al2O3. Overall electrical property of the developed hybrid composites decreases on reinforcement, which is measured by a four-probe technique. Optical properties are investigated through FTIR, UV–VIS-NIR and fractured surfaces are analysed by SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kaczmar J W, Pietrzak K, and Wlosinski W, J Mater Process Technol 106 (2000).

  2. Sivasankaran S, Sivaprasad K, Narayanasamy R, and Iyer V K, Powder Technol 201 (2010).

  3. Miracle D B, Compos Sci Technol 65 (2005).

  4. Zhang L, He X B, Qu X H, Duan B H, Lu X, and Qin M L, Wear 265 (2008).

  5. Deuis R L, Subramanian C, and Yellupb J M, Compos Sci Technol 57 (1997).

  6. Vettivel S C, Selvakumar N, Narayanasamy R, and Leema N, Mater Des 50 (2013).

  7. Maji P, Dube R K, and Basu B, J Tribol 131 (2009).

  8. Rajkovic V, Bozic D, and Jovanovic M T, J Alloys Compd 459 (2008).

  9. Das D, Samanta A, and Chattopadhyay P P, Mater Manuf Proc 22 (2007).

  10. Lee J, Euh K, Oh J C, and Lee S, Mater Sci Eng A Struct 323 (2002).

  11. Zhan Y, and Zhang G, Mater Des 27 (2006).

  12. Alidokht S A, Abdollah-zadeh A, and Assadi H, Wear 305 (2013).

  13. Cui G, Bi Q, Zhu S, Fu L, Yang J, Qiao Z, and Liu W, Wear 303 (2013).

  14. Tang Y, Liu H, Zhao H, Liu L, and Wu Y, Mater Des 29 (2008).

  15. Guiderdoni C, Pavlenko E, Turq V, Weibel A, Puech P, Estournès C, Peigney A, Bacsa W, and Laurent C, Carbon 58 (2013).

  16. He D, and Manory R, Wear 249 (2001).

  17. Cui G, Bi Q, Niu M, Yang J, and Liu W, Tribol Int 60 (2013).

  18. Ramesh C S, Noor Ahmed R, Mujeebu M A, and Abdullah M Z, Mater Des 30 (2009).

  19. Ramesh C S, Noor Ahmed R, Mujeebu M A, and Abdullah M Z, Mater Des 30 (2009).

  20. Kovalchenko A M, Fushchich O I, and Danyluk S, Wear 290–291 (2012).

  21. Elsen S R, and Ramesh T, Int J Refract Met Hard Mater 52 (2015).

  22. Santos R L P, Silva F S, Nascimento R M, Motta F V, Souza J C M, and Henriques B, Ceram Int 42 (2016).

  23. Zhong L, Zhanga X, Chen S, Xu Y, Wub H, and Wangb J, Int J Refract Met Hard Mater 57 (2016).

  24. Li Y, Zhu Z, He Y, Chen H, Jiang C, Han D, and Li J, J Mater Process Technol 238 (2016).

  25. Fathy A, Shehata F, Abdelhameed M, and Elmahdy M, Mater Des 36 (2012).

  26. Nasiri H, Vahdati J K, and Zebarjad S M, J Alloys Compd 509 (2011).

  27. Groza J R, and Gibeling J C, Mater Sci Eng A171 (1993) 115.

    Article  Google Scholar 

  28. Sauer C, Weibgarber T, Dehm G, Mayer J, Püsche W, and Kieback B, Z Metallkd 89 (1998) 119.

  29. Park J Y, Oh S J, Jung C H, Hong G W, and Kuk I H, J Mater Sci Lett 18 (1999).

  30. Motta M S, Jena P K, Brocchi E A, and Sorano I G, Mater Sci Eng C 15 (2001).

  31. Lee D W, Ha G H, and Kim B K, Scr Mater 44 (2001).

  32. Gautam R K, Ray S, Sharma S C, Jain S C, and Tyagi R, Wear 271 (2011).

  33. Samal C P, Parihar J S, and Chaira D, J Alloys Compd 569 (2013).

  34. Chandrakanth R G, Rajkumar K, and Arvindan S, Int Adv Manuf Technol 48 (2010).

  35. Rajkumar K, and Arvindan S, Tribol Int 44 (2011).

  36. Lin Y C, Li H C, Liou S S, and Shie M T, Mater Sci Eng A 373 (2004).

  37. Casati R, and Vedani M, Metals 4 (2014).

  38. Nguyen Q B, Tun K S, Chan J, Kwok R, Kuma J V M, and Gupta M, Mater Sci Eng A 528 (2011).

  39. Nguyen Q B, and Gupta M, Compos Mater 43 (2009).

  40. Zhang Z, Tremblay R, and Dube D, Mater Sci Eng A 385 (2004).

  41. Hassan S F, and Gupta M, Mater Sci Technol 19 (2003).

  42. Nguyen Q B, and Gupta M, Compos Sci Technol 68 (2008).

  43. Szaraz Z, Trojanova Z, Cabbibo M, and Evangelista E, Mater Sci Eng A 462 (2007).

  44. Kim Y, Lee J, Yeom M S, Shin J W, Kim H, Cui Y, Kysar J W, Hone J, Jung Y, and Jeon S, Nat Commun 4 (2013).

  45. Tang Y, Yang X, Wang R, and Li M, Mater Sci Eng A 599 (2014).

  46. Prabhu T R, Varma V K, and Vedantam S, Wear 317 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manvandra Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M.K., Gautam, R.K. Synthesis of Copper Metal Matrix Hybrid Composites Using Stir Casting Technique and Its Mechanical, Optical and Electrical Behaviours. Trans Indian Inst Met 70, 2415–2428 (2017). https://doi.org/10.1007/s12666-017-1103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1103-0

Keywords

Navigation