Skip to main content
Log in

In-Situ Electrochemical Monitoring and Ex-Situ Chemical Analysis of Epoxy Coated Steels in Sodium Chloride Environment Using Various Spectroscopic Techniques

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The effect of immersion time and chloride ion concentration on the early stage of corrosion behavior of scratched epoxy-coated carbon (SM) and chromium containing low-alloy steel (H5) samples were investigated in an in situ manner using localized electrochemical impedance spectroscopy. The results revealed that, the H5 samples had significantly higher impedance values than the SM, which indicated higher corrosion resistance of H5 samples. The drop in impedance magnitude was observed for higher Cl ion concentration, which indicated that breakdown of passive film had been initiated by Cl ion resulting in localized corrosion attack of the surface. The morphological and elemental studies showed the formation of green rust and a very stable hydroxide (CrxFe1−x(OH)2) on SM and H5 surface respectively as a corrosion product. Hence, the H5 could be a hopeful material with extremely high corrosion resistance for the use as steel structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Indira K, and Nishimura T, Int J Electrochem Sci 11 (2016) 419.

    Google Scholar 

  2. Afia L, Salghi R, Benali O, Jodeh S, Selim S, Al-Deyab S, and Hammouti B, Trans Ind Inst Met 68 (2015) 521.

    Article  Google Scholar 

  3. Indira K, and Nishimura T, in Proceedings CORCON 2015, Paper No. RP. 03, http://corcon.org/DataFiles/RP-03.pdf (2015).

  4. Lin B, Hu R, Ye C, LI Y, and Lin C, Electrochim Acta 55 (2010) 6542.

    Article  Google Scholar 

  5. Souto R M, Garcia Y G, and Gonzalez S, Corros Sci 47 (2005) 3312.

    Article  Google Scholar 

  6. Souto R M, Garcia Y G, Gonzalez S, and Burstein G T, Electroanalysis 21 (2009) 2569.

    Article  Google Scholar 

  7. Shao Y, Jia C, Meng G, Zhang T, and Wang F, Corros Sci 51 (2009) 371.

    Article  Google Scholar 

  8. Souto R M, Garcia Y G, Izquierdo J, and Gonzalez S, Corros Sci 52 (2010) 748.

    Article  Google Scholar 

  9. Zhong C, Tang X, and Cheng Y F, Electrochim Acta 53 (2008) 4740.

    Article  Google Scholar 

  10. Lillard R S, Moran P J, and Isaacs H S, J Electrochem Soc 139 (1992) 1007.

    Article  Google Scholar 

  11. Bayet E, Huet F, Keddam M, Ogle K, and Takenouti H, J Electrochem Soc 144 (1997) L87.

    Article  Google Scholar 

  12. Bandarenka AS, Eckhard K, Maljusch A, and Schuhmann W, Anal Chem 85 (2013) 2443.

    Article  Google Scholar 

  13. Frateur I, Huang VMW, Orazem ME, Pebere N, Tribollet B, and Vivier V, Electrochim Acta 53 (2008) 7386.

    Article  Google Scholar 

  14. Jorcin J B, Aragon E, Merlatti C, and Pebere N, Corros Sci 48 (2006) 1779.

    Article  Google Scholar 

  15. Lima-Neto P D, Farias J P, Herculano L F G, Miranda H C D, Araujo W S, Jorcin J B, and Pebere N, Corros Sci 50 (2008) 1149.

    Article  Google Scholar 

  16. Jorcin J B, Krawiec H, Pebere N, and Vignal V, Electrochim Acta 54 (2009) 5775.

    Article  Google Scholar 

  17. Darowicki K, Szocinski M, and Zielinski A, Electrochim Acta 55 (2010) 3741.

    Article  Google Scholar 

  18. Szocinski M, and Darowicki K, Polym Degrad Stab 98 (2013) 261.

    Article  Google Scholar 

  19. Montoya R, Garcia-Galvan F R, Jimenez-Morales A, and Galvan J C, Electrochem Commun 15 (2012) 5.

    Article  Google Scholar 

  20. Mouanga M, Puiggali M, Tribollet B, Vivierb V, Pebere N, and Devos O, Electrochim Acta 88 (2013) 6.

    Article  Google Scholar 

  21. Jorcin J B, Orazem M E, Pebere N, and Tribollet B, Electrochim Acta 51 (2006) 1473.

    Article  Google Scholar 

  22. Mierisch A M, Taylor S R, and Celli V, J Electrochem Soc 150 (2003) B309.

    Article  Google Scholar 

  23. Philippe L V S, Walter G W, and Lyon S B, J Electrochem Soc 150 (2003) B111.

    Article  Google Scholar 

  24. Baril G, Blanc C, Keddam M, and Pebere N, J Electrochem Soc 150 (2003) B488.

    Article  Google Scholar 

  25. Blanc C, Orazem M E, Pebere N, Tribollet B, Vivier V, and Wu S, Electrochim Acta 55 (2010) 6313.

    Article  Google Scholar 

  26. Balusamy T, and Nishimura T, Electrochim Acta 199 (2016) 305.

    Article  Google Scholar 

  27. Sinebryukhov S L, Gnedenkov A S, Mashtalyar D V, and Gnedenkov S V, Surf Coat Tech 205 (2010) 1697.

    Article  Google Scholar 

  28. Lillard R S, Kruger J, Tait W S, and Moran P J, Corrosion 51 (1995) 251.

    Article  Google Scholar 

  29. Losiewicz B, Popczyk M, Smolka A, Szklarska M, Osak P, and Budniok A, Solid State Phenom 228 (2015) 383.

    Article  Google Scholar 

  30. Upadhyay V, and Battocchi D, Prog Org Coat 99 (2016) 365.

    Article  Google Scholar 

  31. Orazem M E, and Tribollet B Electrochemical Impedance Spectroscopy, Wiley, Hoboken, New Jersey (2008). ISBN: 978-0-470-04140-6.

    Book  Google Scholar 

  32. Huang VMW, Wu SL, Orazem ME, Pebere N, Tribollet B, and Vivier V, Electrochim Acta 56 (2011) 8048.

    Google Scholar 

  33. Wu SL, Orazem ME, Tribollet B, and Vivier V, J Electrochem Soc 156 (2009) C28.

    Article  Google Scholar 

  34. Balusamy T, and Nishimura T, J Anal Bioanal Tech 7 (2016) 328. doi:10.4172/2155-9872.1000328

    Google Scholar 

  35. Annergren I, Thierry D, and Zou F, J Electrochem Soc 144 (1997) 1208.

    Article  Google Scholar 

  36. Kabir K B, and Muhmud I, J Chem Eng IEB, chE 25 (2010) 13.

  37. Shibaeva T V, Laurinavichyute V K, Tsirlina G A, Arsenkin A M, and Grigorovich K V, Corros Sci 80 (2014) 299.

    Article  Google Scholar 

  38. Montemor M F, Simoes A M P, and Ferreira M G S, Cem Concr Compos 25 (2003) 491.

    Article  Google Scholar 

  39. Jegdic B, Drazic D M., and Popic J P, Corros Sci 50 (2008) 1235.

    Article  Google Scholar 

  40. Lu Y, Jing H, Han Y, and Lu L, Mater Chem Phy 178 (2016) 160.

    Article  Google Scholar 

  41. Zou F, and Thierry D, Electrochim Acta 42 (1997) 3293.

    Article  Google Scholar 

  42. Wei L, Pang X, and Gao K, Fire Saf 111 (2016) 637.

    Google Scholar 

  43. Morlidge J.R., Badger S., Bigland D.J., and Sergi G., A localized electrochemical investigation into the performance of concrete corrosion inhibitors under simulated pore solution conditions, 1–11, www.cortecmci.com.

  44. Pickering H W, and Frankenthal R P, J. EIectrochem Soc 119 (1972) 1297.

    Article  Google Scholar 

  45. Han W, Yu G, Wang Z, and Wang J, Corros Sci 49 (2007) 2920.

    Article  Google Scholar 

  46. Schwertmann U, and Fechter H, Clay Miner 29 (1994) 87.

    Article  Google Scholar 

  47. Hu Q, Zhang G, Qiu Y, and Guo X, Corros Sci 53 (2011) 4065.

    Article  Google Scholar 

  48. Konishi H, Yamashita M, Uchida H, and Mizuki J, Mater Trans 46 (2005) 329.

    Article  Google Scholar 

  49. Nishimura T, and Rajendran N, Mater Trans 55 (2014) 1547.

    Article  Google Scholar 

  50. Nishimura T, ISIJ Int 55 (2015) 1739.

    Article  Google Scholar 

  51. Chen Y Y, Tzeng H J, Wei L I, Wang L H, Oung J C, and Shih H C, Corros Sci 47 (2005) 1001.

    Article  Google Scholar 

  52. Han W, Pan C, Wang Z, and Yu G, Corros Sci 88 (2014) 89.

    Article  Google Scholar 

  53. Guo S, Xu L, Zhang L, Chang W, and Lu M, Corros Sci 63 (2012) 246.

    Article  Google Scholar 

  54. Gabrielli C, Joiret S, Keddam M, Portail N, Rousseau P, and Vivier V, Electrochim Acta 53 (2008) 7539.

    Article  Google Scholar 

  55. Park S A, Le D P, and Kim J G, Mater Trans 54 (2013) 1770.

    Article  Google Scholar 

  56. Indira K, and Nishimura T, J Mater Eng Perform 25 (2016) 4157.

    Article  Google Scholar 

  57. Carvalho D S, Joia C J B, and Mattos O R, Corros Sci 47 (2005) 2974.

    Article  Google Scholar 

  58. Guo Y B, Li C, Liu Y C, Yu L M, Ma Z Q, Liu C X, and Li H J, Int J Miner Metall Mater 22 (2015) 604.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nishimura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indira, K., Nishimura, T. In-Situ Electrochemical Monitoring and Ex-Situ Chemical Analysis of Epoxy Coated Steels in Sodium Chloride Environment Using Various Spectroscopic Techniques. Trans Indian Inst Met 70, 2347–2360 (2017). https://doi.org/10.1007/s12666-017-1096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1096-8

Keywords

Navigation