Skip to main content
Log in

Studies on Effect of Parent Metal Condition on the Room Temperature Mechanical Properties of Ti6Al4V Friction Welds

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The influence of parent metal condition on the microstructure and mechanical properties of friction welds of Ti6Al4V alloy has been investigated. Welds are observed to contain predominantly martensite. Stress relieving results in improvement in the strengths of α + β and β treated parent metal and their welds. β welds are observed to contain coarser prior β grains. Studies reveal that welds of α + β solution treated parent metal exhibit higher strength than all the other welds. In plain tensile tests, the location of failure is away from the welds in all the conditions, suggesting that the welds are stronger than their respective parent metals. Parent metal in α + β and β solution treated conditions is observed to respond to stress relieving such that, hardness is improved after stress relieving. Stress relieving results in reduced ductility and improvement in the strength of the welds. Notch tensile strength of the welds is observed to be higher than their parent metals and stress relieving results in further improvement. The notch tensile ratio of the welds has been observed to be ~1.4 in all the conditions indicating that the welds are not notch sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Donachie M J Jr., Titanium: A Technical Guide, 2nd ed. ASM International, Almere (2000).

    Google Scholar 

  2. Moiseyev V N, Titanium Alloys: Russian Aircraft and Aerospace Applications, Taylor & Francis, New York (2006).

  3. Leyens C, and Peters M, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH, Weinheim (2003).

  4. Boyer R R, Mater Sci Eng A 213 (1996) 103.

    Article  Google Scholar 

  5. Gilbert S, and Shannon R, Heat Treating of Titanium and Titanium Alloys, ASM Handbook Volume 4: Heat Treating, ASM International (1991), p 2043–2071.

  6. Baeslack W A III, Davis J R, and Cross C E, Selection and Weldability of Conventional Titanium Alloys, ASM Handbook Volume 6: Welding, Brazing and Soldering, ASM International, (1995) p 507–523.

  7. Holsberg P W, Cracking and Porosity In Titanium Alloy Weldments, U.S. Navy DTNSRDC report (1979).

  8. Mazumder J, and Steen W M, Metall Trans A 13 (1982) 865.

    Article  Google Scholar 

  9. Lindh D V, and Peshak G M, Weld J 48 (1966) 45.

    Google Scholar 

  10. Mohandas T, Mechanical Property Studies on Electron Beam and Friction Welds of an Alpha + Beta Titanium Alloy, Ph D Thesis (Banaras Hindu University, India) (1994).

  11. Mohandas T, Srinivas M, and Kutumba Rao V V, Fatigue Fract Eng Mater Struct 23 (2000) 33.

    Article  Google Scholar 

  12. Savage W F, and Aronson A H, Weld J 45 (1966) 85.

    Google Scholar 

  13. Mohandas T, Banerjee D, and Kutumba Rao V V, Mater Sci Eng A 254 (1998) 147.

    Article  Google Scholar 

  14. Nessler C G, Rutz D A, Eng R D, and Vozzela P A, Weld J 50 (1971) 379s.

    Google Scholar 

  15. Sun D, Ren Z, and Zhou A, J Mater Sci Technol 16 (2000) 59.

    Google Scholar 

  16. Thomas G, Ramachandra V, Nair M J, Nagarajan K V, and Vasudevan R, Weld J Res Suppl 71 (1992) 15s.

    Google Scholar 

  17. Sundaresan S, Janaki Ram G D, and Reddy G M, Mater Sci Eng A 262 (1999) 88.

    Article  Google Scholar 

  18. Tsay L W, Shan Y P, Chao Y H, and Shu W Y, J Mater Sci 41 (2006) 7498.

    Article  Google Scholar 

  19. Xiong J T, Li J L, Wei Y N, Zhang F S, and Huang W D, Acta Mater 61 (2013) 1662.

    Article  Google Scholar 

  20. Kishore Babu N, Sundara Raman S G, Srinivasa Murty C V, and Reddy G M, Mater Sci Eng A 471 (2007) 113.

    Article  Google Scholar 

  21. Tsay L W, Hsu C L, and Chen C, Mater Chem Phys 120 (2010) 715.

    Article  Google Scholar 

  22. Lu M Y, Tsay L W, and Chen C, Mater Trans 53 (2012) 1042.

  23. Mohandas T, Banerjee D, and Kutumba Rao V V, Mater Sci Eng A 289 (2000) 70.

    Article  Google Scholar 

  24. Ji S D, Zhuo B, Gao S S, Huang Y X, Zhang L G, Li J Z, and Ma Y N, Eng Rev 35 (2015) 27.

    Google Scholar 

  25. Hirth J P, and Froes F H, Metall Trans A 8A (1977) 1165.

    Article  Google Scholar 

  26. Baeslack W A, and Banas C M, Weld J Res Suppl 61 (1981) 121s.

    Google Scholar 

  27. Baeslack W A III, Becker D W, and Froes F H, JOM 36 (1984) 46.

    Google Scholar 

  28. Baeslack W A III, and Becker D W, Metall Mater Trans A 11A (1980) 605.

    Article  Google Scholar 

  29. Meshram S, and Mohandas T, Def Sci J 61 (2011) 590.

    Article  Google Scholar 

  30. Mohandas T, Banerjee D, and Kutumba Rao V V, Metall Mater Trans A 30 (1999) 789.

    Article  Google Scholar 

  31. Fujii H, Mater Sci Eng A 243 (1998) 103.

    Article  Google Scholar 

  32. Romero J, Attallah M M, Preuss M, Karadge M, and Bray S E, Acta Mater 57 (2009) 5582.

    Article  Google Scholar 

  33. Lütjering G, Mater Sci Eng A 243 (1998) 32.

    Article  Google Scholar 

  34. Balasubramanian T S, Balakrishnan M, Balasubramanian V, and Muthu Manickam M A, Trans Nonferrous Met Soc China 21 (2011) 1253.

    Article  Google Scholar 

  35. Meshram S D, and Mohandas T, Mater Des 31 (2010) 2245.

    Article  Google Scholar 

  36. Chu C Y, Hsieh C T, and Tsay L W, Mater Des 63 (2014) 14.

    Article  Google Scholar 

  37. Hsieh C T, Chu C Y, Shiue R K, and Tsay L W, Mater Des 59 (2014) 227.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Rajulapati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahul, R., Rajulapati, K.V., Reddy, G.M. et al. Studies on Effect of Parent Metal Condition on the Room Temperature Mechanical Properties of Ti6Al4V Friction Welds. Trans Indian Inst Met 70, 2277–2291 (2017). https://doi.org/10.1007/s12666-017-1084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1084-z

Keywords

Navigation