Skip to main content

Evaluation of the Suitability of Alternative Binder to Replace OPC for Iron Ore Slime Briquetting

Abstract

Iron ore slime is a powdery material of very fine size (<50 µm) generated during washing of iron ores. Despite of high iron oxide content, it can’t be used in the iron making process because of its higher alumina and silica content. In recent times, we have developed the process of making briquettes from iron ore slime as a coolant to replace iron ore lump in basic oxygen furnaces (BOF). Slime is hydraulically compacted using 10 wt% ordinary Portland cement (OPC) for binding to briquette shape and around 8 wt% of total charging material is fed to the BOF along with hot metal. The main objective of the present work is to find out an environment friendly, economically viable alternative of OPC binder for briquetting. Binder selection is done in such way that the total cost of briquette does not to exceed a 10 wt% OPC based reference. A range of binders which includes organic, inorganic and combinations of both are tested. It is observed that OPC and lime combination produces comparable properties. The replacement of OPC by lime can reduce the total cost of the binder and can lower the consumption of energy, as OPC production is energy intensive. It has less environmental impact than OPC, because the total CO2 emission is reduced.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Manna M, Sasmal S, Banerjee P K, and Sengupta D K, Powder Technol 211 (2011) 60.

    Article  Google Scholar 

  2. Indian Minerals year book 2014, Indian Bureau of Mines.

  3. Santos I J, Study on the production of iron ore concentrates from Germano tailings, M.Sc. Thesis, PPGEM, Universidade Federal de Ouro Preto UFOP (in Portuguese), Portugal (2003).

  4. Gomes R B, Tomi G D, and Assis P S, Miner Eng 70 (2015) 201.

    Article  Google Scholar 

  5. Thella J S, Mukherjee A K, and Srikakulapu N G, Powder Technol 217 (2012) 418.

    Article  Google Scholar 

  6. Dey S, Pani S, Singh R, and Paul G M, Int J Miner Process 140 (2015) 58.

    Article  Google Scholar 

  7. Rocha L, Cançado R Z L, and Peres A E C, Miner Eng 23 (2010) 842.

    Article  Google Scholar 

  8. Sivamohan R, Int J Miner Process 28 (1990) 247.

    Article  Google Scholar 

  9. Prasad N, Ponomarev M A, Mukherjee S K, Sengupta P K, Roy P K, and Gupta S K, in Proc XVI International Mineral Processing Congress, (ed) Forssberg E, Elsevier Science Publishers, B. V. Amsterdam (1988) p 1369.

  10. Srivastava M P, Pan S K, Prasad N, and Mishra B K, Int J Miner Proc 61 (2001) 93.

    Article  Google Scholar 

  11. Eisele T C, and Kawatra S K, Miner Process Extr Metall Rev 24 (2003) 1.

    Article  Google Scholar 

  12. Panigraphy S C, Jena B C, and Rigaud M, Metall Trans B 21 (1990) 463.

    Article  Google Scholar 

  13. Forsmo S P E, Apelqvist A J, Björkman B M T, and Samskog P O, Powder Technol 169 (2006) 147.

    Article  Google Scholar 

  14. El-Hussiny N A, and Shalabi M E H, Powder Technol 205 (2011) 217.

    Article  Google Scholar 

  15. Halt J A, Roache S C, and Kawatra S K, Miner Process Extr Metall Rev 36 (2015) 192.

    Article  Google Scholar 

  16. Venugopalan T, Rajshekar Y, Sharma R, Kumar S, and Alex T C, Indian Patent, Appl. no. 1077/KOL/2014 (2014).

  17. Srikanth S, Curr Sci 108 (2015) 2014.

    Google Scholar 

  18. Rajshekar Y, Alex T C, Sahoo D P, Babu G A, Balakrishnan V, Venugopalan T, and Kumar S, J Clean Prod 139 (2016) 886.

    Article  Google Scholar 

  19. Iveson S M, Holt S, Biggs S, Int J Miner Proc 74 (2004) 281.

    Article  Google Scholar 

  20. Mindess S, Young J F, and Darwin D, Concrete, 2nd Ed, Prentice-Hall, Pearson Education, Inc. Upper Saddle River, New Jersey (2003).

  21. Iguchi Y, Narushima T, and Izumi C, J Alloys Compd 321 (2001) 276.

    Article  Google Scholar 

  22. Namduri H, and Nasrazadani S, Corros Sci 50 (2008) 2493.

    Article  Google Scholar 

  23. Cornell R M, and Schwertmann U, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd Ed, Wiley, New York (1996).

    Google Scholar 

  24. Nath S K, Maitra S, Mukherjee S, and Kumar S, Cons Build Mater 111 (2016) 758.

    Article  Google Scholar 

  25. Gani M S J, Cement and Concrete, Chapman & Hall, London (1997).

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to the director, CSIR-NML, Jamshedpur, India for his kind permission to publish this work. Authors are thankful to Tata Steel, Jamshedpur, India for supplying raw material, and financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Nath.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nath, S.K., Rajshekar, Y., Alex, T.C. et al. Evaluation of the Suitability of Alternative Binder to Replace OPC for Iron Ore Slime Briquetting. Trans Indian Inst Met 70, 2165–2174 (2017). https://doi.org/10.1007/s12666-017-1038-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1038-5

Keywords

  • Iron ore slime
  • Briquetting
  • Alternative cement binder
  • Lime
  • Compressive strength