Skip to main content
Log in

Phenomenological Study on Fine Particle Misplacement Behavior in Hydrocyclone

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In spite of widespread applications of hydrocyclone, imprecise particle separation is an inherent limitation associated with it and led to a significant effect on the grinding operation. Such inefficiency is primarily attributable to the misplacement of significant amount of fine particles in the coarser product stream and commonly known as “bypass” in literature. Concerted research efforts are still continuing at various directions to rationalize the occurrence of such phenomenon in a quantifiable manner. This study reveals a fundamental basis towards the genesis and occurrence of bypass in hydrocyclone based on the hydrodynamic of particulate suspension within the turbulent field. Through a series of experiments, we generated carefully controlled experimental data in a 50.8 mm hydrocyclone to analyse the physical response of different parameters (design and operating) on the bypass. Proceeding with the experimental observations we disclose that fines recovery is not equal to that of water split in the underflow. Following this lead, we concluded that the bypass is principally driven by the hydrodynamic condition and the turbulent dispersion of the suspended particle in the prevailing centrifugal force field. Detailed calculations are presented on the basis of solid–fluid two-phase turbulent model to describe the above phenomenological incident. Although our analysis presented here confined to the small diameter hydrocyclone, we are optimistic that the acquired knowledge will be rationale towards the perception of a physical meaning to bypass even for larger classifying cyclones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

d vf :

Vortex finder diameter (mm)

d sp :

Spigot diameter (mm)

d p :

Particle diameter (m)

ρ s :

Particle density (kg/m3)

ρ :

Fluid density (kg/m3)

μ :

Fluid viscosity (kg/m3)

P in :

Feed inlet pressure (kPa)

Φ s :

Solid concentration (%w/w)

s m :

Specific gravity of mixture

u r :

Particle radial velocity (m/s)

u θ :

Tangential velocity (m/s)

u t :

Settling velocity (m/s)

\( u^{*} \) :

Shear velocity (m/s)

L dis :

Dispersion length scale (m)

I dis :

Dispersion index (dimensionless)

G :

G force (dimensionless)

ω :

Centrifugal acceleration (m/s2)

τ p :

Particle relation time (s)

m wuf :

Mass of pulp water in underflow (kg)

m wf :

Mass of pulp water in feed (kg)

U :

Mass flow rates of solids in underflow (kg/s)

F :

Mass flow rates of solids in feed (kg/s)

u i :

Mass fraction of ith size particle in underflow

f i :

Mass fraction of ith size particle in feed

S :

Selectivity index

C :

Classification function

B p :

Bypass fraction

R f :

Volumetric water recovery in underflow (dimensionless)

References

  1. Banerjee C, Climent E, and Majumder A K, Chem Eng Sci 152 (2016) 724.

    Article  Google Scholar 

  2. Knowles S R, Woods D R, and Feuerstein I A, Can J Chem Eng 51 (1973) 263.

    Article  Google Scholar 

  3. Hsieh K T, and Rajamani R K, AIChE J 37 (1991) 735.

    Article  Google Scholar 

  4. Fisher M J, and Flack R D, Exp Fluids 32 (2002) 302.

    Article  Google Scholar 

  5. Lim E W C, Chen Y R, Wang C H, and Wu R M, Chem Eng Sci 65 (2010) 6415.

    Article  Google Scholar 

  6. Dyakowski T, and Williams R A, Chem Eng Sci 48 (1993) 1143.

    Article  Google Scholar 

  7. Brennan M, Chem Eng Res Des 84 (2006) 495.

    Article  Google Scholar 

  8. Narasimha M, Brennan M, and Holtham P N, Int J Miner Process 80 (2006) 1.

    Article  Google Scholar 

  9. Wang B, Chu K W, and Yu A B, Ind Eng Chem Res 46 (2007) 4695.

    Article  Google Scholar 

  10. Wang B, and Yu A B, Chem Eng J 135 (2008) 33.

    Article  Google Scholar 

  11. Ghodrat M, Kuang S B, Yu A B, Vince A, Barnett G D, and Barnett P J, Ind Eng Chem Res 52 (2013) 16019.

    Article  Google Scholar 

  12. Banerjee C, Chaudhury K, Majumder A K, and Chakraborty S, Ind Eng Chem Res 54 (2015) 522.

    Article  Google Scholar 

  13. Lynch A J, and Rao T C, in XI International Minerals Processing Congress, Cagliari (1975), p 9.

  14. Plitt L R, CIM Bull (1976) 114.

  15. Chen W, Zydek N, and Parma F, Chem Eng J 80 (2000) 295.

    Article  Google Scholar 

  16. Coelho M A, and Medronho R, Chem Eng J 84 (2001) 7.

    Article  Google Scholar 

  17. Nageswararao K, Wiseman D, and Napier-Munn T, Miner Eng 17 (2004) 671.

    Article  Google Scholar 

  18. Narasimha M, Mainza A N, Holtham P N, Powell M S, and Brennan M S, Int J Miner Process 133 (2014) 1.

    Article  Google Scholar 

  19. Wills B A, Mineral Processing Technology, Butterworth-Heinemann, Oxford (2006), p 188.

  20. Kelsall D F, Trans Inst Chem Eng 30 (1952) 87.

    Google Scholar 

  21. Frachon M, and Cilliers J, Chem Eng J 73 (1999) 53.

    Article  Google Scholar 

  22. Neesse T, Dueck J, and Minkov L, Miner Eng 17 (2004) 689.

    Article  Google Scholar 

  23. Schubert H, Int J Miner Process 96 (2010) 14.

    Article  Google Scholar 

  24. Endres E, Dueck J, and Neesse T, Miner Eng 31 (2012) 42.

    Article  Google Scholar 

  25. Dueck J, Adv Powder Technol 24 (2013) 150.

    Article  Google Scholar 

  26. Dueck J, Farghaly M, and Neesse T, Miner Eng 62 (2014) 25.

    Article  Google Scholar 

  27. Nageswararao K, Powder Technol 297 (2016) 106.

    Article  Google Scholar 

  28. Del Villar R, and Finch J A, Miner Eng 5 (1992) 661.

    Article  Google Scholar 

  29. Roldan-Villasana E J, Williams R A, and Dyakowski T, Powder Technol 77 (1993) 243.

    Article  Google Scholar 

  30. Kraipech W, Chen W, Parma F J, and Dyakowski T, Int J Miner Process 66 (2002) 49.

    Article  Google Scholar 

  31. Bradly D, The Hydrocyclones, Pergamon Press, London (1965), p 57.

    Google Scholar 

  32. Bourgeois F, and Majumder A K, Powder Technol 237 (2013) 367.

    Article  Google Scholar 

  33. Majumder A K, Yerriswamy P, and Barnwal J P, Miner Eng 16 (2003) 1005.

    Article  Google Scholar 

  34. Kilavuz F S, and Gülsoy Ö Y, Int J Miner Process 98 (2011) 163.

    Article  Google Scholar 

  35. Vallebuona G, Casali A, Ferrara G, Leal O, and Bevilacqua P, Miner Eng 8 (1995) 321.

    Article  Google Scholar 

  36. Braun T, and Bohnet M, Chem Eng Technol 13 (1990) 15.

    Article  Google Scholar 

  37. Dubey R K, Climent E, Banerjee C, and Majumder A K, Int J Miner Process 154 (2016) 41.

    Article  Google Scholar 

  38. Shah H, Majumder A K, and Barnwal J P, Miner Eng 19 (2006) 102.

    Article  Google Scholar 

  39. Banerjee C, Suresh, Majumder A K, and Varma S N, Int J Sci Res 2 (2013) 9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Majumder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, C., Dubey, R.K. & Majumder, A.K. Phenomenological Study on Fine Particle Misplacement Behavior in Hydrocyclone. Trans Indian Inst Met 70, 313–322 (2017). https://doi.org/10.1007/s12666-016-0993-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0993-6

Keywords

Navigation