Skip to main content
Log in

Ratcheting Behaviour of Stainless Steel 316L with Interference Fitted Holes in Low-Cycle Fatigue Region

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This article aims to investigate ratcheting and mean stress relaxation in a steel holed plate with interference fit by using kinematic and isotropic hardening models. To predict the fatigue life of the plates, it was necessary to estimate the residual stresses, pre-stresses and ratcheting at the pin entrance and exit faces of the hole which were considered to be the potential location for crack initiations. Based on a three dimensional model, which considered the cyclic plastic behaviour of materials, the interference fit process of the pin into the hole was simulated. Four hardening models based on a strain-controlled pull–push test and unidirectional tension test were used to simulate the hardening behaviour of low-carbon stainless steel 316L. Ratcheting and stress relaxation in different planes through the plate thickness were examined. In order to study the effect of stress ratio on the ratcheting behaviour around the hole, four different conditions of cyclic loading with stress ratios of R = −1, −0.5, 0, 0.15 were investigated. The comparison between the analyses and available experimental results showed that the combined nonlinear kinematic hardening model with nonlinear isotropic model could provide more reasonable and more suitable responses for predicting fatigue life improvements with interference fit methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Mínguez J M, Vogwell J, Eng Fail Anal 13 (2006) 997.

    Article  Google Scholar 

  2. Chakherlou T N, Mirzajanzadeh M, Abazadeh B, Saeedi K, Eur J Mech A-Solid 29 (2010) 675.

    Article  Google Scholar 

  3. Chakherlou T N, Abazadeh B, Mater Des 37 (2012) 128.

    Article  Google Scholar 

  4. Chakherlou T N, Mirzajanzadeh M, Vogwell J, Eng Fail Anal 16 (2009) 2066.

    Article  Google Scholar 

  5. Mishra A, Chellapandi P, Suresh Kumar R, Sasikala G, Trans Ind Inst Met 68 (2015) 623.

    Article  Google Scholar 

  6. Ohno N, J Soc Mater Sci Jpn 46 (1997) 1.

    Google Scholar 

  7. Kang G, Int J Fatigue 30 (2008) 1448.

    Article  Google Scholar 

  8. Chaboche J L, Int J Plast 24 (2008) 1642.

    Article  Google Scholar 

  9. Asraff A K, Sunil S, Muthukumar R, Ramanathan T J, Trans Ind Inst Met 63 (2010) 601.

    Article  Google Scholar 

  10. Zakavi S J, Zehsaz M, Eslami M R, Nucl Eng Des 240 (2010) 726.

    Article  Google Scholar 

  11. Mohammadpour A, Chakherlou TN, Int J Mech Sci 106 (2016) 297.

    Article  Google Scholar 

  12. Chakherlou T N, Yaghoobi A, Fatigue Fract Eng Mater Struct 33 (2010) 740.

    Article  Google Scholar 

  13. Li Y, Pan X, Wang G, Int J Fatigue 55 (2013) 74.

    Article  Google Scholar 

  14. Arcari A, Dowling N E, Int J Fatigue 42 (2012) 238.

    Article  Google Scholar 

  15. Arcari A, De Vita R, Dowling N E, Int J Fatigue 31 (2009) 1742.

    Article  Google Scholar 

  16. Maximov J T, Duncheva G V, Mitev I N, J Constr Steel Res 65 (2009) 909.

    Article  Google Scholar 

  17. Benedetti M, Fontanari V, Scardi P, Ricardo C L A, Bandini M, Int J Fatigue 31 (2009) 1225.

    Article  Google Scholar 

  18. Lee C H, Do V N V, Chang K H, Int J Plast 62 (2014) 17.

    Article  Google Scholar 

  19. Hao H, Ye D, Chen Y, Feng M, Liu J, Mater Des 67 (2015) 272.

    Article  Google Scholar 

  20. Oskouei R H, Chakherlou T N, Aerosp Sci Technol 13 (2009) 325.

    Article  Google Scholar 

  21. Prager W, A New Method of Analyzing Stresses and Strains in Work-hardening Plastic Solids, Division of Applied Mathematics, Brown University (1955) p 1.

    Google Scholar 

  22. Besseling J F, A Theory of Elastic, Plastic and Creep Deformations of an Initially Isotropic Material Showing Anisotropic Strain-hardening, Creep Recovery, and Secondary Creep, Stanford University Department of Aeronautical Engineering (1958) p 1.

    Google Scholar 

  23. Armstrong P J, Frederick C O, A Mathematical Representation of the Multiaxial Bauschinger Effect, CEGB Report RD/B/N731, Berkeley Nuclear Laboratories, Berkeley (1966).

  24. Chaboche J L, Int J Plast 2(1986) 149.

    Article  Google Scholar 

  25. Mishra A, Chellapandi P, Suresh Kumar R, Sasikala G, Trans Ind Inst Met 68 (2015) 161.

    Article  Google Scholar 

  26. Dunne F, Petrinic N, Introduction to Computational Plasticity, OUP Oxford (2005) p 24.

  27. Portier L, Calloch S, Marquis D, Geyer P, Int J Plast 16 (2000) 303.

    Article  Google Scholar 

  28. Rezaiee-Pajand M, Sinaie S, Int J Solids Struct 46 (2009) 3009.

    Article  Google Scholar 

  29. Chakherlou T N, Ajri M, Fatigue Fract Eng Mater Struct 36 (2013) 327.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Abdollahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahi, E., Chakherlou, T.N. & Oskouei, R.H. Ratcheting Behaviour of Stainless Steel 316L with Interference Fitted Holes in Low-Cycle Fatigue Region. Trans Indian Inst Met 70, 1349–1358 (2017). https://doi.org/10.1007/s12666-016-0931-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0931-7

Keywords

Navigation