Skip to main content
Log in

Evaluation of Mechanical and Tribological Behavior of Al–4 %Cu–x %SiC Composites Prepared Through Powder Metallurgy Technique

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This article presents characterization of 99.85 % pure aluminum with 4 % copper, reinforced with varying proportions of silicon carbide. Al–Cu–SiC metal matrix composite (MMC’s) are prepared by powder metallurgy route for 0, 2.5, 5, 7.5, 10, 12.5 and 15 % of SiC addition. To investigate the effects of adding SiC particles, microstructural analysis and mechanical properties by micro-hardness, compression, wear and thermal conductivity are studied. Scanning electron microscope image shows uniform distribution of particulates. Results show that upon increasing addition of SiC particles, micro-hardness and compression strength increases, whereas thermal conductivity decreases. Wear rate increases till 7.5 % SiC addition, with further addition of SiC, wear rate increases due to the un-bonding of SiC particles from the MMC, aiding in the increase of wear rate. Addition of SiC up to 7.5 % play an important role in improving wear resistance, thermal and mechanical properties of Al–Cu–SiC MMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Black J T, and Kohser R A, DeGarmo’s Materials and Processes in Manufacturing, Tenth Edition, John Wiley & Sons, Inc, USA (2008), p 334.

    Google Scholar 

  2. Senthilkumar N, Kalaichelvan K, and Elangovan K, International Journal of Mechanical and Materials Engineering 7 (2012) 214.

    Google Scholar 

  3. Serope Kalpakjian, and Steven R Schmid, Manufacturing Engineering and Technology, Prentice Hall, New York (2009), p 216.

    Google Scholar 

  4. Md Habibur Rahman, and Mamun Al Rashed H M, Procedia Engineering 90 (2014) 103.

    Article  Google Scholar 

  5. Ramanpreet Singh, and Rahul Singla, International Journal of Applied Engineering Research 7 (2012) 1420.

    Google Scholar 

  6. Khaloobagheri M, Janipour B, Askari N, and Shafiee Kamal Abad E, Advances in Production Engineering & Management 8 (2013) 242.

    Article  Google Scholar 

  7. Adeosun S O, Osoba L O, and Taiwo O O, World Academy of Science, Engineering and Technology 8 (2014) 737.

    Google Scholar 

  8. Jufu Jiang, and Ying Wang, Materials & Design 79 (2015) 32.

    Article  Google Scholar 

  9. Gursoy Arslan, and Ayse Kalemtas, Journal of the European Ceramic Society 29 (2009) 473.

    Article  Google Scholar 

  10. Basavarajappa S, and Chandramohan G, Journal of Materials Engineering and Performance 15 (2006) 656.

    Article  Google Scholar 

  11. ASM International Handbook Committee, Powder Metal Technologies and Applications, Volume 7, ASM International, USA (1998).

  12. Aykut Canakci, and Temel Varol, Powder Technology 268 (2014) 72.

    Article  Google Scholar 

  13. Rajaram G, Kumaran S, and Srinivasa Rao T, Transactions of The Indian Institute of Metals 64 (2011) 53.

    Article  Google Scholar 

  14. Ipek R, Journal of Materials Processing Technology 162–163 (2005) 71.

    Article  Google Scholar 

  15. Ruth E Whan, Materials Characterization, Volume 10, ASM International, USA (1992).

    Google Scholar 

  16. Ali Mazhery, and Mohsen Ostad Shabani, Transactions of Nonferrous Metals Society of China 23 (2013) 1905.

    Article  Google Scholar 

  17. Akhlaghi F, Lajevardi A, and Maghanaki H M, Journal of Materials Processing Technology 155–156 (2004) 1874.

    Article  Google Scholar 

  18. Shorowordi K M, Laoui T, Haseeb A S M A, Celis J P, and Froyen L, Journal of Materials Processing Technology 142 (2003) 738.

    Article  Google Scholar 

  19. George F Vander Voort, Metallography and Microstructures-ASM Handbook, Volume 9, ASM International, USA (2004).

    Google Scholar 

  20. Joseph R Davis, Metals Handbook Desk Edition, Second Edition, ASM International, USA (1998).

    Google Scholar 

  21. Ronald F Gibson, Principles of Composite material mechanics, McGraw-Hill, Inc., New York (1994), p 374.

    Google Scholar 

  22. Rana R S, Rajesh Purohit, Soni V K, and Das S, Materials Today: Proceedings 2 (2015) 1149.

    Article  Google Scholar 

  23. Howard Kuhn, and Dana Medlin, Mechanical Testing and Evaluation, Volume 8, ASM International, USA (2000).

    Google Scholar 

  24. Jin-Chein Lin, Composites Part B: Engineering 38 (2007) 79.

    Article  Google Scholar 

  25. Yao X, Zheng Y F, Liang J M, and Zhang D L, Materials Science and Engineering: A 648 (2015) 225.

    Article  Google Scholar 

  26. Huda D, El Baradie M A, and Hashmi M S J, Journal of Materials Processing Technology 56 (1996) 452.

    Article  Google Scholar 

  27. Mario F Moreno, Carlos J R, and Gonzalez Oliver, Materials Science and Engineering: A 418 (2006) 172.

    Article  Google Scholar 

  28. Hani Aziz Ameen, Khairia Salman Hassan, and Ethar Mohamed Mhdi Mubarak, American Journal of Scientific and Industrial Research 2 (2011) 99.

    Article  Google Scholar 

  29. Rajmohan T, Palanikumar K, and Ranganathan S, Transactions of Nonferrous Metals Society of China 23 (2013) 2509.

    Article  Google Scholar 

  30. Muthu Kumar V, Venkatasamy R, Suresh Babu A, Jagan K, and Nithin K, International Journal of production technology and Management Research 2 (2011) 49.

    Google Scholar 

  31. Kori S A, and Prabhudev M S, Wear 271 (2011) 680.

    Article  Google Scholar 

  32. Natarajan N, Vijayarangan S, and Rajendran I, Wear 261 (2006) 812.

    Article  Google Scholar 

  33. Basavarajappa S, Arun K V, and Paulo Davim J, Journal of Minerals & Materials Characterization & Engineering 8 (2009) 379.

    Article  Google Scholar 

  34. Fatih Erdemir, Aykut Canakci, Temel Varol, and Serdar Ozkaya, Journal of Alloys and Compounds 644 (2015) 589.

    Article  Google Scholar 

  35. Yang L J, Wear 255 (2003) 579.

    Article  Google Scholar 

  36. Senthilkumar N, Tamizharasan T, and Anbarasan M, Journal of Advanced Engineering Research 1 (2014) 48.

    Google Scholar 

  37. Prieto R, Molina J M, Narciso J, and Louis E, Composites Part A: Applied Science and Manufacturing 42 (2011) 1970.

    Article  Google Scholar 

  38. Huber T, Degischer H P, Lefranc G, and Schmitt T, Composites Science and Technology 66 (2006) 2206.

    Article  Google Scholar 

  39. Chen J K, and Huang I S, Composites: Part B 44 (2013) 698.

    Article  Google Scholar 

  40. Arpon R, Molina J M, Saravanan R A, Garcia-Cordovilla C, Louis E, and Narciso J, Acta Materialia 51 (2003) 3145.

    Article  Google Scholar 

  41. Mikell P Groover, Fundamentals of Modern Manufacturing-Materials, Processes and Systems, fourth edition, John Wiley & Sons, Inc., USA (2010), p 67.

    Google Scholar 

  42. Mohan Krishna S A, Shridhar T N, and Krishnamurthy L, International Journal of Material Science 5 (2015) 54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Senthilkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvakumar, V., Muruganandam, S. & Senthilkumar, N. Evaluation of Mechanical and Tribological Behavior of Al–4 %Cu–x %SiC Composites Prepared Through Powder Metallurgy Technique. Trans Indian Inst Met 70, 1305–1315 (2017). https://doi.org/10.1007/s12666-016-0923-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0923-7

Keywords

Navigation