Skip to main content
Log in

A Study on Friction Stir Multi Spot Welding Techniques to Join Commercial Pure Aluminum and Mild Steel Sheets

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

To achieve significant improvement in the shear strength of dissimilar joints between aluminum and mild steel sheets, four methods of friction stir multi-spot welding processes, were investigated. Initially, in all these methods, plasticized aluminum layer was deposited on the steel side by friction surfacing. Subsequently, the deposited aluminum was compacted by friction forming. After dressing, spot welding with different tool configurations was performed. Tool rotational speeds of 900, 1120, 1400 and 1800 rpm were used to analyze their effects on the weld nugget. Different mechanical and metallurgical characterizations were done on the welds thus made. The process with aluminum layer on grooved mild steel followed by friction stir multi-spot welding using concave tipped welding tool resulted in welds. These welds had better metallurgical bonding characteristics and higher shear strength, which at a rotational speed of 1120 rpm was more than twice that of the welds made with conventional friction stir spot welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cole G S, and Sherman A M, Mater Charact 35 (1995) 3.

  2. Sun X, and Khaleel M A, Int J Impact Eng 34 (2007) 1668.

  3. Carle D, and Blount G, Mater Design 20 (1999) 267.

  4. Prangnell P, Haddadi F, and Chen Y C, Mater Sci Technol 27 (2011) 617.

  5. Kobayashi S, and Yakou T, Mater Sci Eng A338 (2002) 44.

  6. Mishra R S, and Mahoney M W, in Friction Stir Welding and Processing, ASM International, Materials Park, OH (2007), p 235.

  7. Connolly C, Ind Robot 34 (2007) 17.

  8. Abe Y, Kato T, and Mori K, J Mater Proc Technol 177 (2006) 417.

  9. Choi C Y, Kim D C, Nam D G, Kim Y D, and Park Y D, J Mater Sci Technol 26 (2010) 858.

  10. Zhang W H, Sun D Q, Han L J, Gao W Q, and Qiu X M, ISIJ Int 51 (2011) 1870.

  11. Zhang W H, Qiu X M, Sun D Q, and Han L J, Sci Technol Weld Join 16 (2011) 153.

  12. Qiu R, Iwamoto C, and Satonaka S, J Mater Proc Technol 209 (2009) 4186.

  13. Qiu R F, Satonaka S, and Iwamoto C, Mater Design 30 (2009) 3686.

  14. Kano Y, Inuzuka M, Yamashita S, Nakashima Y, Nagao Y, and Iwashita T, Japanese patents application no. P2000-355770 (2000).

  15. Venukumar S, Yalagi S, and Muthukumaran S, Trans Nonferr Met Soc China (English Ed.) 23 (2013) 2833.

  16. Uematsu Y, Tokaji K, Tozaki Y, Kurita T, and Murata S, Int J Fatigue 30 (2008) 1956.

  17. Tao W, Li L Q, Chen Y B, and Wu L, Sci Technol Weld Join 13 (2008) 754.

  18. Mishra R S, and Ma Z Y, Mater Sci Eng Rep 50 (2005) 1.

  19. Feng K Y, Watanabe M, and Kumai S, Mater Trans 52 (2011) 1418.

  20. Lakshminarayanan A K, Annamalai V E, and Elangovan K, J Mater Res Technol 4 (2015) 262.

  21. Mahto R P, Bhoje R, Pal S K, Joshi H S, and Das S, Mater Sci Eng A652 (2016) 136.

  22. Piccini J M, and Svoboda H G, Procedia Mater Sci 9 (2015) 504.

  23. Fereiduni E, Movahedi M, and Kokabi A H, J Mater Process Technol 224 (2015) 1.

  24. Lin Y-C, and Chen J-N, J Mater Process Technol 225 (2015) 347.

  25. Watanabe M, Feng K Y, Nakamura Y, and Kumai S, Mater Trans 52 (2011) 953.

  26. Figner G, Vallant R, Weinberger T, Schrottner H, Pasic H, and Enzinger N, Weld World 53 (2009) R13.

  27. Dong H, Chen S, Song Y, Guo X, Zhang X, and Sun Z, Mater Design 94 (2016) 457.

  28. Gandra J, Krohn H, Miranda R M, Vilaça P, Quintino L, and Dos Santos J F, J Mater Process Technol 214 (2014) 1062.

  29. Miller S F, Manuf Lett 1 (2013) 21.

  30. Lazarevic S, Miller S F, Li J, and Carlson B E, J Manuf Process 15 (2013) 616.

  31. Muthukumaran S, Indian Patent No. 242420 [P] 16 February 2006 (2010).

  32. Prakash J, and Muthukumaran S, Mater Manuf Process 26 (2011) 1539.

  33. Gandraa J, Krohnb H, Mirandac R M, Vilac P, Quintinoa L, and Dos Santos J F, Int J Mater Process Technol 214 (2014) 1062.

  34. Piccinia J M, and Svobodab H G, Procedia Mater Sci 9 (2015) 504.

  35. Da Silva A A M, Aldanondo E, Alvarez P, Arruti E, and Echeverrı A, Sci Technol Weld Join 15 (2010) 682.

  36. Sun Y F, Fujii H, Takaki N, and Okitsu Y, Mater Design 37 (2012) 384.

  37. Shen Z, Yang X, Yang S, Zhang Z, and Yin Y, Mater Design 54 (2014) 766.

  38. Venukumar S, Yalagi S G, Muthukumaran S, and Kailas S V, Sci Technol Weld Join 19 (2014) 214.

Download references

Acknowledgments

The authors thank the Ministry of Human Resource Development (MHRD), Government of India, for the financial support to carry out this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swamy, M.M., Muthukumaran, S. & Kiran, K. A Study on Friction Stir Multi Spot Welding Techniques to Join Commercial Pure Aluminum and Mild Steel Sheets. Trans Indian Inst Met 70, 1221–1232 (2017). https://doi.org/10.1007/s12666-016-0916-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0916-6

Keywords

Navigation