Skip to main content
Log in

Assessment of Arc Welding Process Through the Combination of TOPSIS–AHP Methods with Fuzzy Logic

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this work we have shown that how combining the multi-criteria decision making (MCDM) process with fuzzy logic can be very efficient to solve decision problems in which there are criteria of different natures. This combination is applied here to solve a real decision problem of great interest in structural steel welding which is used widely in industry. The problem consists of selecting the best electric arc welding processes for a plate thickness greater than 12 mm. Because facing a decision problem of this type involves, on one hand, quantitative criteria (thermal efficiency, productivity, minimum power, etc.) and on the other hand, qualitative criteria (fatigue of welder, process learning, reliability, etc.), not only will it be necessary to apply a MCDM process, but it should also be combined with fuzzy logic with the aim of being able to perform the extraction of knowledge through a survey focused on experts. The Analytic Hierarchy Process has been used in order to obtain the weight of the criteria and, through the Technique for Order Preference by Similarity to Ideal Solution. The alternatives are also evaluated. There are no previous studies related to welding processes using the MCDM process with fuzzy logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Negative ideal value set

A+ :

Positive ideal value set

Ai :

Best alternative

AHP:

Analytic Hierarchy Process

aij, bij, cij :

Fuzzy number

Ci :

Criteria

CI:

Consistency index

cii :

Relative important of Ci–Ci

cij :

Relative important of Cj–Cj

CR:

Consistency ratio

Ek :

Number of experts

ELECTRE:

Elimination Et Choix Traduisant la Realité

F-PROMETHEE:

Fuzzy Preference Ranking Organization Method for Enrichment Evaluations

FCAW:

Flux cored arc welding

GMAW:

Gas metal active welding

GTAW:

Gas tungsten arc welding

λ max :

Maximum eigenvalue

m:

Amount of alternatives

MAG:

Metal active gas

MCDM:

Multi-criteria decision making

MIG:

Metal inert gas

n:

The size of the matrix C

NIS:

Negative ideal solution

PAW:

Plasma arc welding

PIS:

Positive ideal solution

PROMETHEE:

Preference ranking organization method of enrichement evaluations

RI:

Random index

Ri :

Ranking score

SAW:

Submerged arc welding

SMAW:

Shield metal arc welding

TOPSIS:

Technique for order performance by similarity to ideal solution

W:

Weight vector associated with the criteria

wi :

The criterion Ci

wj :

The criterion Cj

xij :

Represent the performance score of alternative Ai against criteria Cj

References

  1. DuPont J, and Marder A, Weld J Weld Res Suppl 74 (1995) 406.

    Google Scholar 

  2. Tušek J, Suban M, J Mater Process Technol 133 (2003) 207.

    Article  Google Scholar 

  3. Meseguer-Valdenebro J L, MartÃ-nez-Conesa E J, Serna-Serrano J, and Portoles A, Therm Sci 20(2) (2016). doi:10.2298/TSCI140503106M.

  4. Welding Handbook, Welding processes, 8th ed., vol. 2. AWS, USA (2001).

    Google Scholar 

  5. Mononen J, Sirén M and Hänninen H, Weld World 47 (2003) 11.

    Article  Google Scholar 

  6. Kang M, Kim Y, Ahn S, and Rhee S, Weld J 82 (2003) 238S.

    Google Scholar 

  7. Kang M, and Rhee S, Weld. J 80 (2001) 1S.

    Google Scholar 

  8. EN B, Br Stand Inst (2001).

  9. Satty TL and others, The Analytic Hierarchy Process, McGraw-Hill, New York (1980).

  10. Hwang C and Yoon K, Multiple Attribute Decision Making: Methods and Applications, A State of the Art Survey. Springer, New York, 1981.

  11. Roy B, Rairo-Oper Res-Rech Opérationnelle 2 (1968) 57.

    Google Scholar 

  12. Brins J and Vinke P, Manag Sci 31 (2002) 647.

    Article  Google Scholar 

  13. Nikolic M, Jovanic D, Cockalo D, Djordjevic D, and Desnica E, Met Int 17 (2012) 51.

    Google Scholar 

  14. Park H, and Lee G, Development of Laser Welding System with Digital Manufacturing Technology, in Korus 2005, Proceedings, Pr Karla Marksa 20, 630092 Novosibirsk, Russia (2005) 625.

  15. Ravisankar V, Balasubramanian V, and Muralidharan C, Mater Des 27 (2006) 373.

    Article  Google Scholar 

  16. Balasubramanian V, Varahamoorthy R, Ramachandran C S, and Muralidharan C, Int J Adv Manuf Technol, 40 (2009) 887.

    Article  Google Scholar 

  17. Yilmaz B, and Dağdeviren M, Expert Syst Appl 38 (2011) 11641.

    Article  Google Scholar 

  18. Zadeh L A, Inf Control 8 (1965) 338.

    Article  Google Scholar 

  19. Klir G, and Yuan B, Fuzzy sets and Fuzzy Logic, Prentice Hall, New Jersey (1995).

  20. Zadeh L A, The Concept of a Linguistic Variable and its Application to Approximate Reasoning, Springer, Berlin (1974).

  21. Zadeh L A, and Kacprzyk J, Computing with Words in Information/Intelligent Systems 2: Foundations, Springer Science & Business Media, Berlin (1999).

  22. Zadeh L A, and Kacprzyk J, Computing with Words in Information/Intelligent Systems 1: Foundations, Springer Science & Business Media, Berlin (1999).

  23. García-Cascales M S and Lamata M T, Pattern Recognit Lett, 28 (2007) 2284.

    Article  Google Scholar 

  24. Bellman R E, Zadeh L A, Manag Sci 17 (1970) 141.

    Article  Google Scholar 

  25. Kacprzyk J and Yager R R, Int J Gen Syst 30 (2001) 133.

    Article  Google Scholar 

  26. Kerre E E, Approx Reason Decis Anal (1982) 277.

  27. Sánchez-Lozano J, Dolón-Payán A, and Serna J, Aerosp Sci Technol (2015).

  28. Saaty T L, Manag Sci, 36 (1990) 259.

    Article  Google Scholar 

  29. Alonso J A, and Lamata M T, Int J Uncertain Fuzziness Knowl- Based Syst 14 (2006) 445.

    Article  Google Scholar 

  30. Forman EH, Eur J Oper Res 48 (1990) 153.

    Article  Google Scholar 

  31. Wang T C and Chang T H, Expert Syst Appl, 33 (2007) 870.

    Article  Google Scholar 

  32. Garcia-Cascales M S, and Lamata M T, J Intell Manuf 22 (2011) 779.

    Article  Google Scholar 

  33. Chen C T, Fuzzy Sets Syst 114 (2000) 1.

    Article  Google Scholar 

  34. S.-J. J. Chen, C.-L. Hwang, M. J. Beckmann, and W. Krelle, Fuzzy multiple attribute decision making: methods and applications. Springer-Verlag New York, Inc., 1992.

  35. Dutta P, Joshi Y, and Franche C, Exp Therm Fluid Sci 9 (1994) 80.

    Article  Google Scholar 

  36. Niles R, and Jackson C, Weld J 54 (1975).

    Google Scholar 

  37. Chen J, Lu J, Li X and Zhang Y, Weld J 91 (2012) 9.

    Google Scholar 

  38. AWS Committee on Filler Metal, Ed., Specification for Tungsten and Tungsten-Alloy Electrodes for Arc Welding and Cutting. ANSI/AWS A5.12/A5.12 M-98. American Welding Society, USA (2005).

  39. Atkins G, Thiessen D, Nissley N, and Adonyi Y, Weld J 81 (2002) 61S.

    Google Scholar 

  40. Garcia R P, and Scotti A, Soldag Inspecao 16 (2011) 146.

    Article  Google Scholar 

  41. Gomes J H F, Costa S C, Paiva A P, and Balestrassi P P, J Mater Eng Perform 21 (2012) 1862.

    Article  Google Scholar 

  42. Mostafa N, and Khajavi M, J Achieve Mater Man Eng 16 (2006) 1.

    Google Scholar 

  43. Nadzam J, Ed., GMAW Welding Guide. Lincoln Electric (2014).

  44. AWS Committee on Filler Metal, Ed., Specification for Carbon Steel Electrodes and Rods for Gas Shield Arc Welding Arc Welding. AWS A5.18/A5.18 M. American Welding Society, USA (2005).

  45. Houldcroft P T, Ed., Submerged-Arc Welding (Second Edition), Woodhead Publishing, Sawston 2 (1989) 87.

    Google Scholar 

  46. ASME International, Ed., Specification for Carbon Steel Electrodes and Fluxes for Submerged Arc Welding. SFA-5.17. American Welding Society, USA (2004).

  47. Crespo A C, Scotti A, and Pérez M R, J Mater Process Technol, 199 (2008) 265.

    Article  Google Scholar 

  48. AWS Committee on Filler Metal, Ed., Specification for Carbon Steel Electrodes for Shielded Metal Arc Welding. ANSI/AWS A5.1-91. American Welding Society, USA (1991).

  49. American Welding Society (AWS) A2 Committee on Definitions and Symbols, Standard Welding Terms and Definitions, 12th ed. AWS, USA (2010).

  50. Caso A, Sistemas de incentivos a la producción Editor. Fund. Confemetal España (2003).

  51. Mendez P F and Eagar T W, Adv Mater Process 159 (2001) 39.

    Google Scholar 

  52. Morrow L C, Maintenance Engineering Handbook, 2nd Ed Morrow LC (Ed.), Mcgraw-Hill, New York (1966).

  53. Modenesi P, and De Avelar R, J Mater Process Technol, 86 (1999) 226.

    Article  Google Scholar 

  54. Suban M, and Tušvsek J, J Mater Process Technol 119 (2001) 185.

    Article  Google Scholar 

  55. Meseguer-Valdenebro J L, Serna J, Portoles A, Estrems M, Miguel V, and Martínez-Conesa E, Trans Indian Inst Met (2015) 1.

  56. Capitanescu D, Press Vessel Technol 2 (1992) 1164.

    Google Scholar 

  57. Harris M K, Ewing W M, Longo W, DePasquale C, Mount M D, Hatfield R, and Stapleton R, J Occup Environ Hyg 2 (2005) 375.

    Article  Google Scholar 

  58. Keeney R L and Raiffa H, Decisions with Multiple Objectives: Preferences and Value Trade-offs, Cambridge university press, Cambridge (1993).

  59. Luce R D, and Raifa H, Games and Decisions-Introduction and Critical Survey, Wiley (1957).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Meseguer-Valdenebro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Lozano, J.M., Meseguer-Valdenebro, J.L. & Portoles, A. Assessment of Arc Welding Process Through the Combination of TOPSIS–AHP Methods with Fuzzy Logic. Trans Indian Inst Met 70, 935–946 (2017). https://doi.org/10.1007/s12666-016-0884-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0884-x

Keywords

Navigation