Skip to main content
Log in

Phase Investigation and Multi Objective Optimization of Dielectric Behaviour of Bismuth Titanate–Calcium Copper Titanate Nanocomposites Using Grey Relational Grade Analysis

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

First time, bismuth titanate–calcium copper titanate (BTOX–CCTO1−X) composite materials were produced through sol–gel combustion process. X-ray diffraction analysis revealed that the obtained products were phase pure with dual phase composite system. Atomic percentage of each element present in the composite, observed by energy dispersive spectroscopy, was consistent with that in the raw materials as per stoichiometry. Field emission scanning electron microscopy showed evidence that the large CCTO grains embedded in small BTO grains and both co-existed with a bimodal distribution. The composite materials showed excellent dielectric behaviour that made them promising candidates for the high dielectric embedded capacitors. An efficient grey relational grade approach was introduced for improving the condition of major controlled parameters like frequency, operating temperature and molar composition and optimizing these parameters to obtain maximum dielectric constant and minimum dielectric loss simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jiongxin L, and Wong C P, IEEE Trans Dielectr Elect Insul 15 (2008) 1322.

  2. Min Y, Olmedo R, Hill M, Radhakrishnan K, Aygun K, Kabiri-Badr M, Panat R, Dattaguru S, and Balkan H, in Electronic Components and Technology Conference (2013) 1225.

  3. Zhao N, Wan L, and Yu S, in Int. Conf. on Electronic Packaging Tech. and High density Packaging (2011) 264.

  4. D. Chakravarty, P. Singh, S. Singh, D. Kumar, O. Parkash, J. Alloys Compd 438 (2007) 253.

    Article  Google Scholar 

  5. Saboia K D A, Fechine P B A, Santos M R P, Freire F N A, Pereira F M M, and Sombra A S B, Polym Compo 28 (2007) 771.

    Article  Google Scholar 

  6. Pinheiro A G, Pereira F M M, Santos M R P, Rocha H H B, and Sombra A S B, J Mater Sci 42 (2007) 2112.

    Article  Google Scholar 

  7. Abdullah H, Jalal W N W, and Zulfakar M S, J SolGel Sci Tech 69 (2014) 429.

    Article  Google Scholar 

  8. Koparkar K A, Bajaj N S, and Omanwar S K, Defect Diffus Forum 361 (2015) 95.

    Article  Google Scholar 

  9. Simoes A Z, Ries A, Filho F M, Riccardi R C, Varela J A, and Longo E, Appl Phys Lett 85 (2004) 5962.

    Article  Google Scholar 

  10. Singh L, Rai U S, Mandal K D, Sin B C, Lee H, Chung H, and Lee Y, Mater Char 96 (2014) 54.

    Article  Google Scholar 

  11. Raykar S J, D’Addona D M, and Mane A M, Procedia CIRP 7 (2013) 299.

    Article  Google Scholar 

  12. Jayaraman P, and Mahesh Kumar L, Procedia Eng 97 (2014) 197.

  13. Ravindran P, Manisekar K, Narayanasamy P, Selvakumar N, and Narayanasamy R, Mater Des 39 (2012) 42.

    Article  Google Scholar 

  14. Magudeeswaran G, Nair S R, Sundar L, and Harikannan N, Def Tech 10 (2014) 251.

    Article  Google Scholar 

  15. Deng J L, J Grey Syst 1 (1989) 1.

    Google Scholar 

  16. Joint Committee on Powder Diffraction Standards (JCPDS) database #: 73-2181.

  17. Joint Committee on Powder Diffraction Standards (JCPDS) database #: 75-2188.

  18. Kumar A, Nazzario R, Castro L T, Duarte A P, and Tomar M S, Int J Hydrogen Eng 40 (2015) 4931.

    Article  Google Scholar 

  19. Pandey R, Meena B R, and Singh A K, J. Alloys Compd 593 (2014) 224.

    Article  Google Scholar 

  20. Singh L, Kim I W, Sin B C, Ullah A, Woo S K, and Lee Y, Mater Sci Semicon Proces 31 (2015) 386.

    Article  Google Scholar 

  21. Abdullah H, Jalal W N W, Zulfakar M S, Islam M T, Bais B, and Shaari S, J Kor Phys Soc 66 (2015) 41.

    Article  Google Scholar 

  22. Tunc T, Dokme I, Altındal S, and Uslu I, J Appl Polym Sci 122 (2011) 265.

    Article  Google Scholar 

  23. Sharma R, Pahuja P, Tandon R P, Pandey R, Meena B R, and Singh A K, J. Alloys compd 593 (2014) 224.

    Article  Google Scholar 

  24. Shukla A, Choudhary R N P, Thakur A K, and Pradhan D K, Phys. B: Condens Mater 405 (2010) 99–106.

    Article  Google Scholar 

  25. Rahaman M D, Setu S H, Saha S K, and Hossain A K M A, J. Magn Magn Mater 385 (2015) 418.

    Article  Google Scholar 

  26. Koops C G. Phys Rev 83 (1951) 121.

    Article  Google Scholar 

  27. Li J, Cho K, Wu N, and Ignatiev A, IEEE Trans Dielectr Electr Insul 11 (2004) 534.

    Google Scholar 

  28. Singh J P, Gautam S, Kumar P, Tripathi A, Chen J M, Chae K H, and Asokan K, J Alloys Comp 572 (2013) 84.

    Article  Google Scholar 

  29. Dubey A K, Singh P, Singh S, Kumar D, and Parkash O, J Alloys Compd 509 (2011) 3899.

    Article  Google Scholar 

  30. Gavartin J L, Ramo D M, Shluger A L, Bersuker G, and Lee B H, Appl Phys Lett 89 (2006) 1.

    Article  Google Scholar 

  31. Rahman M T, Vargas M, and Ramana C V, J. Alloys Compd 617 (2014) 547.

    Article  Google Scholar 

  32. Senn M S, Wright J P, and Attfield J P, Nature 481 (2012) 173.

    Article  Google Scholar 

  33. Mishra P, and Kumar P, J. Alloys Compd 617 (2014) 899.

    Article  Google Scholar 

  34. Ayesh A S, and Abdel-Rahem R, Bull Mater Sci 33 (2010) 589.

    Article  Google Scholar 

  35. Hilczer B, Kulek J, Markiewicz E, Kosec M, and Mali B, J Non-Cryst Solid 305 (2002)167.

    Article  Google Scholar 

  36. Li P, Mcdonald J F, and Lu T M, J Appl Phys 71 (1992) 5596.

    Article  Google Scholar 

  37. Arbatti M, Shan X, and Cheng Z Y, Adv Mater 19 (2007) 1369.

    Article  Google Scholar 

  38. Arun Kumar D, Selvasekarapandian S, Nithya H, Sakunthala A, and Hema M, Phys. B: Condens Mater 405 (2010) 3803.

  39. Singh L, Kim I W, Sin B C, Mandal K D, Rai U S, Ullah A, Chung H, and Lee Y, RSC Adv 4 (2014) 52770.

    Article  Google Scholar 

  40. Lin Y, Feng D Y, Gao M, Ji YD, Jin L B, Yao G, Liao FY, Zhang Y, and Chen C L, J Mater Chem C 3 (2015) 3438.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Directorate of Extramural Research & Intellectual Property Rights (ER & IPR), Defence Research & Development Organization (DRDO), New Delhi, for providing financial support for this study (Project No. ERIP/ER/1104613/M/01/1460). The authors also thank Thiru A. Tenzing and Dr. S. Arivazhagan, Correspondent and Principal, respectively, of Mepco Schlenk Engineering College, Sivakasi, for their constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marikani Arumugam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandirengan, T., Arumugam, M., Durairaj, M. et al. Phase Investigation and Multi Objective Optimization of Dielectric Behaviour of Bismuth Titanate–Calcium Copper Titanate Nanocomposites Using Grey Relational Grade Analysis. Trans Indian Inst Met 69, 1819–1832 (2016). https://doi.org/10.1007/s12666-016-0845-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0845-4

Keywords

Navigation