Skip to main content

Advertisement

Log in

Creep Damage Evaluation of DS CM247 Nickel Base Superalloy Using Alternate Current Potential Drop Technique

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The evolution of creep damage in a directionally solidified DS CM247 alloy during creep at 950 °C/250 MPa has been evaluated using alternate current potential drop (ACPD) technique in which a constant alternating current was passed through the specimen and corresponding potential drop was measured. Creep tests were interrupted at different strain levels in order to examine the microstructural degradation of the alloy during creep. The creep curve of the alloy exhibited limited primary and secondary creep regimes, but extended tertiary creep regime. Microstructural examination revealed the progressive directional coarsening of γ′ precipitates i.e., rafting and widening of γ matrix channel with accumulation of creep strain. The specimen exhibited a considerable amount of creep strain prior to fracture. Further, creep cavitation was observed only close to the fractured end of the specimens. Various factors responsible for the extended tertiary creep regime of the alloy are discussed. The potential of ACPD technique to be used as a NDE tool to monitor in service/online creep damage evaluation, has been established/demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ling X, Chem Eng Mach (in Chinese) 17 (1990) 224.

    Google Scholar 

  2. Lemaitre J, and Dufailly J, Eng Fract Mech 28 (1987), 643.

    Article  Google Scholar 

  3. Cane B J, and Shammas M S, CEGB Report TPRD/L/2645/N84 (1984).

  4. Kim H J, and Jung J J, ASME J Eng Mater Technol 112 (2000) 56.

    Article  Google Scholar 

  5. Baby S, Nagaraja Kowmudi B, Omprakash C M, Satyanarayana D V V, Balasubramaniam K, and Kumar V, Scr Mater 59 (2008) 818.

    Article  Google Scholar 

  6. Xiang L, and Tu T S, J Test Eval 30 (2002) 251.

    Article  Google Scholar 

  7. Lemaitre J, ASME J Eng Mater Technol 97 (1985) 83.

    Article  Google Scholar 

  8. Cane B J, and Alpin P F, ASME J Press Vessel Technol 107 (1985) 295.

    Article  Google Scholar 

  9. Govindaraju M R, Kaminski D A, Devine M K, Biner S B, and Jiles D C, NDT & E Int 30 (1997) 11.

    Article  Google Scholar 

  10. Vasatis I P, and Pelloux R M, J Metals  37 (1985) 44.

    Google Scholar 

  11. Vasatis P I, and Pelloux R M, Metall Trans A 19A (1988) 863.

    Article  Google Scholar 

  12. Pelloux R M, Peltier J M, and Zilberstein V A, J Eng Mater Technol 111 (1989) 19.

    Article  Google Scholar 

  13. Mann S D, Mater Forum 14 (1990) 147.

    Google Scholar 

  14. Narayanan A, Davies C M, and Mahmoud Y K, in Proc of the ASME 2013 Pressure vessels and Piping Conference, July 14–18, Paris (2013).

  15. Davies C M, Nagy P, Narayanan A, and Cawley P, in Proc of the ASME 2011 Pressure vessels and Piping Division Conference, July 17–21, Baltimore (2011).

  16. Madhi E, and Nagy P B, NDT&E Int 44 (2011) 708.

    Article  Google Scholar 

  17. Prajapati S, Nagy P B, and Cawley P, NDT&E Int 47 (2012) 56.

    Article  Google Scholar 

  18. Omprakash C M, Kumar A, Ghosh R N, Sridhar A, Rao B N, Srivathsa B, and Satyanarayana D V V, DMRL Internal Report.

  19. Wang Z D, Qiao Y, Zhou B S, and Wu D O, ACTA Metall Sin (Engl Lett) 11 (1998) 456.

    Google Scholar 

  20. Kachanov L M, IZV. Akad. Nauk, SSSR 8 (1958) 26.

    Google Scholar 

  21. Rabotnov YN, in Applied Mechanics: Proceedings of the Twelfth International Congress of Applied Mechanics, Stanford University, Eds. Hetényi M and Vincenti W G, Springer, Berlin, Heidelberg (1969), p 342.

  22. Leckie F A, and Hayhurst D R, Acta Metal 25 (1977) 1059.

    Article  Google Scholar 

  23. Kumar J, Padma S, Srivathsa B, Vyaghreswararao N, and Kumar V, J Eng Mater Technol 131 (2009) 031012.

    Article  Google Scholar 

  24. Dyson B F, and McLean M, Acta Metall 31 (1983) 17.

    Article  Google Scholar 

  25. Dyson B F, and Gibbons T B, Acta Metall 35 (1987) 2355.

    Article  Google Scholar 

  26. Dyson B F, Can Metall Q 18 (1979) 31.

    Article  Google Scholar 

  27. Asby M F, and Dyson B F, in Advances in fracture research, (eds) Valluri S R et al., Pergamon press, New York(1984), p 1.

  28. Fujio A, Metall Mater Trans A-Phys Metall Mater Sci 36A (2005) 321.

    Google Scholar 

  29. Pollock T M, and Tin S, J Propuls Power 22 (2006) 361.

    Article  Google Scholar 

  30. Buffiere J Y, and Ignat M, Acta Metall Mater 43 (1995) 1791.

    Article  Google Scholar 

  31. Tinga T, Brekelmans W A M, and Geers M G D, Comput Mater Sci 47 (2009) 471.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the DRDO for the financial assistance received. Creep testing by Mr. B. Narsingh Rao is gratefully acknowledged. Thanks are due to the Director, DMRL for constant encouragement and for permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Omprakash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omprakash, C.M., Srivathsa, B., Kamaraj, M. et al. Creep Damage Evaluation of DS CM247 Nickel Base Superalloy Using Alternate Current Potential Drop Technique. Trans Indian Inst Met 69, 241–245 (2016). https://doi.org/10.1007/s12666-015-0768-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0768-5

Keywords

Navigation