Skip to main content
Log in

Fatigue Life Estimation of Spot-Welded Joints Using Several Multiaxial Fatigue Criteria

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, the effects of electrode clamping force on the fatigue strength of 5083-0 aluminum alloy spot-welded joints have been investigated via experimental and multiaxial fatigue analysis. To do so, three sets of the specimens—with different amounts of the sheet spacing—which have been fabricated using different values of the electrode clamping force, were selected, and then fatigue tests were performed under various cyclic longitudinal load levels. A nonlinear finite element code was used to obtain the stress and strain distribution near the roots of the nuggets as a result of longitudinal applied loads. Fatigue lives of the specimens were estimated with Crossland, Kandil–Brown–Miller, Glinka, Varvani-Farahani, Fatemi–Socie, and Smith–Watson–Topper multiaxial fatigue criteria by means of the local stress and strain distribution obtained from the finite element analysis. It was shown that, the fatigue lives of spot-welded joints were improved by increasing the electrode clamping force. Also, the comparison between experimental results and multiaxial fatigue predictions revealed that among the applied criteria, the Crossland and Glinka approaches had the best accuracy for all types of the specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Long X, and Khanna S K, Int J Fatigue 29 (2007) 879.

    Article  Google Scholar 

  2. Spitsen R, Kim D, Flinn B, Ramulu M, and Easterbrook E T, J Manuf Sci Eng 127 (2005) 718.

    Article  Google Scholar 

  3. Sun X, Stephens E, Davies R W, Khaleel M A, and Spinella D J, Weld J 83 (2004) 308.

    Google Scholar 

  4. Chang B H, and Zhou Y, J Mater Process Technol 139 (2003) 635.

    Article  Google Scholar 

  5. Ni K, and Mahadevan S, Int J Fatigue 26 (2004) 763.

    Article  Google Scholar 

  6. Adib H, Gilgert J, and Pluvinage G, Int J Fatigue 26 (2004) 81.

    Article  Google Scholar 

  7. Hassanifard S, Zehsaz M, and Esmaeili F, J Comput Methods Eng 32 (2012) 15.

    Google Scholar 

  8. Papadopoulos I V, Davoli P, Grola C, Filippini M, and Bernasconi A, Int J Fatigue 19 (1997) 219.

    Article  Google Scholar 

  9. Brown M W, and Miller K J, ASTM STP 770 (1982) 482.

    Google Scholar 

  10. You B R, and Lee S B, Int J Fatigue 18 (1996) 235.

    Article  Google Scholar 

  11. Macha E, and Sonsino C M, Fatigue Fract Eng Mater Struct 22 (1999) 1053.

    Article  Google Scholar 

  12. Wang Y Y, and Yao W X, Int J Fatigue 26 (2004) 17.

    Article  Google Scholar 

  13. Shamsael N, and Fatemi A, Fatigue Fract Eng Mater Struct 32 (2009) 631.

    Article  Google Scholar 

  14. Findley W N, J Eng Ind Trans ASME 81 (1959) 301.

    Google Scholar 

  15. Susmel L, and Lazzarin P, Fatigue Fract Eng Mater Struct 25 (2002) 63.

    Article  Google Scholar 

  16. McDiarmid D L, Fatigue Fract Eng Mater Struct 14 (1991) 429.

    Article  Google Scholar 

  17. Crossland B, Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel, Published on Conference: International Conference on Fatigue of Metals, Institution of Mechanical Engineers, London (1956).

  18. Brown M W, and Miller K J, Proc Inst Mech Eng 187 (1973) 745.

    Google Scholar 

  19. Fatemi A, and Socie D F, Fatigue Fract Eng Mater Struct 11 (1988) 149.

    Article  Google Scholar 

  20. Li J, Zhang Z P, Sun Q, Li C W, and Qiao Y J, Int J Fatigue 31 (2009) 776.

    Article  Google Scholar 

  21. Wang CH, and Brown M W, Fatigue Fract Eng Mater Struct 16 (1993) 1285.

    Article  Google Scholar 

  22. Smith RN, Watson P, and Topper TH, J Mater 5 (1970) 767.

    Google Scholar 

  23. Glinka G, Shen G, and Plumtree A, Fatigue Fract Eng Mater Struct 18 (1995) 37.

    Article  Google Scholar 

  24. Varvani-Farahani A, Int J Fatigue 22 (2000) 295.

    Article  Google Scholar 

  25. Socie D, J Eng Mater Tech 109 (1987) 293.

    Article  Google Scholar 

  26. Liu K C, ASTM STP 1191 (1993) 67.

    Google Scholar 

  27. Chu C C, Conle F A, and Bonnen J J, ASTM STP 1191 (1993) 37.

    Google Scholar 

  28. Mroz Z, J Mech Phys Solids 15 (1967) 163.

    Article  Google Scholar 

  29. Swanson Analysis Systems Inc., ANSYS, Release 11 (2007).

  30. Swanson Analysis Systems Inc., ANSYS, User’s Guide for Revision 11, ANSYS 9 Documentation, ANSYS Element Reference, Part I: Element Library, SOLID95 (2007).

  31. Higashida Y J, Burk D, and Lawrence F V, Weld J 57 (1978) 334.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Esmaeili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, H., Esmaeili, F. & Dabbagh-Yarishah, J. Fatigue Life Estimation of Spot-Welded Joints Using Several Multiaxial Fatigue Criteria. Trans Indian Inst Met 69, 1595–1603 (2016). https://doi.org/10.1007/s12666-015-0735-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0735-1

Keywords

Navigation