Skip to main content

Advertisement

Log in

Electrochemical Hydrogen Storage Capacity of Ti0.9Zr0.1Mn1.2V0.4Cr0.4 Alloy Synthesized by Ball Milling and Annealing

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present study, Ti0.9Zr0.1Mn1.2V0.4Cr0.4 compound was synthesized from elemental powders blend via high-energy ball milling for hydrogen storage applications. The effects of milling time and subsequent annealing on the structural evaluation and morphology of the powders were investigated via X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. Results represented that the increase of ball milling time impressively increased the amount of the BCC and Laves phases with hexagonal structure. In addition, although lattice strain augmentation and grain size reduction prompted compound to transit to an amorphous state, annealing helped desired phases to be more stable. Results of electrochemical hydrogen storage tests demonstrated that 10 h of milling resulted in highest discharge capacity. This was attributed to the sufficient C14 Laves and BCC phases and adequate crystalline defects. Increasing milling time up to 20 h, reduced the discharge capacity due to the diminution of unit-cell volume and so growing activation energy acted as a barrier for adsorption and desorption of hydrogen. The most cyclic stability was for annealed sample, which contained stable phases because of the heat treatment process. Overall results proved that operating ball milling with optimized parameters led to effective results for production of hydrogen storage in TiMn2-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dutta S, J Ind Eng Chem 20 (2014) 1148.

    Article  Google Scholar 

  2. Chen Z, Xiao X, Chen L, Fan X, Liu L, Li S, Ge H, and Wang Q, J Alloy Compd 585 (2014) 307.

  3. Jehan M, and Fruchart D, J Alloy Compd 580 (2013) S343.

    Article  Google Scholar 

  4. Utgikar V, and Thiesen T, Technol Soc 27 (2005) 315.

    Article  Google Scholar 

  5. Roes A, and Patel M, J Clean Prod 19 (2011) 1659.

    Article  Google Scholar 

  6. Sakintuna B, Lamaridarkrim F, and Hirscher M, Int J Hydrog Energy 32 (2007) 1121.

    Article  Google Scholar 

  7. Shucun L, Minshou Z, Jing Z, and Fengyan W, Mater Chem Phys 113 (2009) 96.

    Article  Google Scholar 

  8. Pickering L, Li J, Reed D, Bevan A, and Book D, J Alloy Compd 580 (2013) S233.

    Article  Google Scholar 

  9. Bibienne T, Tousignant M, Bobet J, and Huot J, J Alloy Compd 624 (2015) 247.

    Article  Google Scholar 

  10. Murshidi J, Paskevicius M, Sheppard D, and Buckley C, Int J Hydrog Energy 36 (2011) 7587.

    Article  Google Scholar 

  11. Vojtěch D, Guhlová P, Morťaniková M, and Janík P, J Alloy Compd 494 (2010) 456.

    Article  Google Scholar 

  12. Young K, Wong D, and Wang L, J Alloy Compd 622 (2015) 885.

    Article  Google Scholar 

  13. Yang X, Lei Y, Wang C, Zhu G, Zhang W, and Wang Q, J Alloy Compd 265 (1998) 264.

    Article  Google Scholar 

  14. Hu W, J Alloy Compd 289 (1999) 299.

    Article  Google Scholar 

  15. Broom D, Hydrogen Storage Materials, Springer, London (2011).

    Book  Google Scholar 

  16. Azarniya A, Salatin F, Eskandaripoor M, and Rasooli A, Adv Powder Technol (2014).

  17. Pan H, Li R, Liu Y, Gao M, Miao H, Lei Y, and Wang Q, J Alloy Compd 463 (2008) 189.

    Article  Google Scholar 

  18. Gamo T, Moriwaki Y, Yanagihara N, and Iwaki T, J Less Common Met 89 (1983) 495.

    Article  Google Scholar 

  19. Bobet J, Chevalier B, and Darriet B, Intermetallics 8 (2000) 359.

    Article  Google Scholar 

  20. Moriwaki Y, Gamo T, and Iwaki T, J Less Common Met 172174 (1991) 1028.

    Article  Google Scholar 

  21. Chu H, Zhang Y, Sun L, Qiu S, Qi Y, Xu F, and Yuan H, J Alloy Compd 446447 (2007) 614.

    Article  Google Scholar 

  22. Bobet J, Int J Hydrog Energy 25 (2000) 767.

    Article  Google Scholar 

  23. Huang T, Wu Z, Sun G, and Xu N, Intermetallics 15 (2007) 59.

    Google Scholar 

  24. Chu H, Zhang Y, Sun L, Qiu S, Xu F, Yuan H, Wang Q, and Dong C, Int J Hydrog Energy 32 (2007) 3363.

    Article  Google Scholar 

  25. Doi K, Hino S, Miyaoka H, Ichikawa T, and Kojima Y, J Power Sources 196 (2011) 504.

  26. Gao P, Yang S, Xue Z, Liu G, Zhang G, Wang L, Li G, Sun Y, and Chen Y, J Alloy Compd 539 (2012) 90.

    Article  Google Scholar 

  27. Hosni B, Li X, Khaldi C, ElKedim O, and Lamloumi J, J Alloy Compd 615 (2014) 119.

    Article  Google Scholar 

  28. Dehaghani M T, Ahmadian M, Fathi M, Adv Powder Technol 25 (2014) 1793.

  29. Cho S, Yoo J, Chang H, Kim W, Kil D, and Ahn J, J Alloy Compd 509 (2011) 5545.

    Article  Google Scholar 

  30. Zhang Y, Ren H, Guo S, Pang Z, Qi Y, and Wang X, J Alloy Compd 750 (2009) 755.

    Google Scholar 

  31. Zhang Y, Qi Y, Ma Z, Cai Y, Guo S, and Wang X, Int J Hydrog Energy 35 (2010) 11025

  32. Paskevicius M, Sheppard D, and Buckley C, J Am Chem Soc 132 (2010) 5077.

    Article  Google Scholar 

  33. Kazemipour M, Salimijazi H, Saidi A, Saatchi A, and Aref arjmand A, Int J Hydrog Energy 39 (2014) 12784.

    Article  Google Scholar 

  34. Semboshi S, Masahashi N, Konno T, Sakurai M, and Hanada S, J Alloy Compd 379 (2004) 290.

    Article  Google Scholar 

  35. Hagström M, Vanhanen J, and Lund P, J Alloy Compd 269 (1998) 288.

    Article  Google Scholar 

  36. Williamson G, and Hall W, Acta Metall 1 (1953) 22.

    Article  Google Scholar 

  37. Suryanarayana C, and Norton M, X-Ray Diffraction, Plenum Press, New York (1998).

    Book  Google Scholar 

  38. Singh B, Shim G, and Cho S, Int J Hydrog Energy 32 (2007) 4961.

    Article  Google Scholar 

  39. Joseph B, Schiavo B, D’Alì Staiti G, and Sekhar B, Int J Hydrog Energy 36 (2011) 7914.

    Article  Google Scholar 

  40. Berube V, Radtke G, Dresselhaus M, and Chen G, Int J Energy Res 31 (2007) 637

  41. Huang H, Huang K, Liu S, Chen D, and Zhuang S, J Braz Chem Soc 20 (2009) 1632.

    Article  Google Scholar 

  42. Wang B, Chen Y, Wang L, and Liu Y, J Alloy Compd 541 (2012) 305.

  43. Wang Y, Zhao M, and Wang L, Int J Hydrog Energy 34 (2009) 2646.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Aref arjmand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemipour, M., Salimijazi, H., Aref arjmand, A. et al. Electrochemical Hydrogen Storage Capacity of Ti0.9Zr0.1Mn1.2V0.4Cr0.4 Alloy Synthesized by Ball Milling and Annealing. Trans Indian Inst Met 69, 1327–1333 (2016). https://doi.org/10.1007/s12666-015-0678-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0678-6

Keywords

Navigation