Skip to main content
Log in

Zinc Extraction Kinetics Studies in the Lewis Cell Based on Conductivity Measurements

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript


In the current study, a novel procedure for studying the zinc solvent extraction kinetics in the Lewis cell is presented. In this study, three steps were followed. In the first step, using the response surface methodology (RSM), the conductivity relation as a function of the pH and the zinc concentration was found. With respect to this model, knowing the pH and the conductivity of a zinc solution, the zinc concentration of the solution is obtained. In the next step, with respect to the RSM design of the experiment, an optimum condition, in which the high extraction of zinc occurred in the Lewis cell, was found to be the pH of 2.88 and the initial zinc concentration of 14.96 g/L. In the final step, the kinetic study was carried out on the solution with the aforementioned condition. Taking into account the mathematical kinetic models obtained by the Lewis cell, the extraction of zinc(II) from a zinc sulfate solution with D2EHPA was limited both by the diffusional and chemical regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others


  1. Javanshir S, Abdollahy M, Abolghasemi H, and Darban A K, Int J Mineral Process 98 (2011) 42.

    Article  Google Scholar 

  2. Zhang W, Hao F, Pranolo Y, Cheng C Y, and Robinson D, in The 6th International Seminar on Copper Hydrometallurgy, (eds) Casas J M, Lightfoot C, and Tapia editors G, Chile (2011).

  3. Huang L, He J, Chen Y-m, Yang S-h, Jin S-m, and Tang M-t, J Cent South Univ 20 (2013) 1797.

  4. Niemczewska J, Cierpiszewski R, and Szymanowski J, Physicochem Probl Mineral Process 37 (2003) 87.

    Google Scholar 

  5. Cianetti C, and Danesi P R, Solvent Extr Ion Exch 1 (1983) 9.

    Article  Google Scholar 

  6. Danesi P R, and Vandegrift G F, J Phys Chem 85 (1981) 3646.

    Article  Google Scholar 

  7. Komasawa I, and Otake T, Ind Eng Chem Fundam 22 (1983) 367.

  8. Hurst F J, Hydrometallurgy 16 (1986) 197.

    Article  Google Scholar 

  9. Plucinski P, and Nitsch W, Ber Bunsenges phys Chem 93 (1989) 994.

  10. Mori Y, Hamada T, Koresawa E, and Eguchi TLW, J Chem Eng Jpn 23 (1990) 616.

    Article  Google Scholar 

  11. Xiong Y, Wang Y G, and Li D Q, Solvent Extr Ion Exch 22 (2004) 833.

    Article  Google Scholar 

  12. Biswas R K, Habib M A, and Mondal M G K, Hydrometallurgy 73 (2004) 257.

    Article  Google Scholar 

  13. El-Hefny N E, Chem Eng Process: Process Intensif 46 (2007) 623.

    Article  Google Scholar 

  14. Biswas R K, Habib M A, and Karmakar A K, Solvent Extr Ion Exch 25 (2007) 79.

    Article  Google Scholar 

  15. El-Hefny N E, Chem Eng Process: Process Intensif 49 (2010) 84.

    Article  Google Scholar 

  16. El-Hefny N E, El-Nadi Y A, and Daoud J A, Sep Purif Technology. 75 (2010) 310.

    Article  Google Scholar 

  17. Xiong Y, Lou Z, Yue S, Song J, Shan W, and Han G, Hydrometallurgy 100 (2010) 110.

    Article  Google Scholar 

  18. Lou Z-n, Y Xiong, J-j Song, Shan W-j, Han G-x, Xing Z-q, and Kong Y-x, Trans Nonferrous Met Soc China 20, (2010) s10.

    Article  Google Scholar 

  19. El-Hefny N E, El-Nadi Y A, and Aly H F, Sep Purif Technol 78 (2011) 330.

    Article  Google Scholar 

  20. Wionczyk B, Cierpiszewski R, Mól A, and Prochaska K, J Hazard Mater 198 (2011) 257.

    Article  Google Scholar 

  21. Xiong Y,Wang W, Gao J, Meng S, Li D, and Wu D, Sep Sci Technol 46 (2011) 959.

    Article  Google Scholar 

  22. Xing P, Wang C-y, Xu S-m, and Ju Z-j, Trans Nonferrous Met Soc China 23 (2013) 517.

    Article  Google Scholar 

  23. Yang X, Wang X, Wei C, Zheng S, Sun Q, and Wang D, Hydrometallurgy 131–132 (2013) 34.

    Article  Google Scholar 

  24. Gadgil O D, Dalvi V H, Shenoy K T, Rao H, Ghosh S K, and Joshi J B, Chemical Engineering Science. 110 (2014) 169.

    Article  Google Scholar 

  25. Bruns R E, Scarminio I S, and Neto B B, Statistical DesignChemometrics, (ed) First, Elsevier (2006).

  26. Bezerra M A, Santelli R E, Oliveira E P, Villar L S, and Escaleira L A, Talanta 76 (2008) 965.

  27. Stat-Ease I, Design Expert v.7 Help, I. (ed) Stat-Ease.

  28. Kamran Haghighi H, Moradkhani D, and Salarirad M M, Hydrometallurgy 154 (2015) 9.

  29. Kamran Haghighi H, Moradkhani D, and Salarirad M M, Int J Nonferrous Metall 2 (2013) 136.

  30. Conductivity Theory and Practice. 2004, Radiometer Analytical SAS France.

  31. Zakrzewska-Koltuniewicz G, Herdzik-Koniecko I, Cojocaru C, and Chajduk E, J Hazard Mater 275 (2014) 136.

    Article  Google Scholar 

  32. Pérez-Maqueda L A, Sánchez-Jiménez P E, and Criado J M, Int J Chem Kinet 37 (2005) 658.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hossein Kamran Haghighi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamran Haghighi, H., Moradkhani, D., Keshavarz Alamdari, E. et al. Zinc Extraction Kinetics Studies in the Lewis Cell Based on Conductivity Measurements. Trans Indian Inst Met 69, 979–989 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: