Skip to main content
Log in

Synthesis of Nanocrystalline Al2O3 Reinforced Al Nanocomposites by High-Energy Mechanical Alloying: Microstructural Evolution and Mechanical Properties

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The scientific importance of nanocomposites is being increased due to their improved properties. In the current paper, the relationship between the reinforcement weight fraction and Tensile properties of Al/Al2O3 (with a reinforcement weight fraction of 0, 2.5, 5 and 10 wt%) synthesized by high energy ball milling is studied. Scanning electron microscopy analysis, X-ray diffraction analysis and transmission electron microscopy are used to characterize the produced powder. The results show that the addition of Alumina particles accelerates the milling process, leading to faster work hardening rate and fracture of the aluminum matrix. Moreover, Al crystallite size become refined during ball milling of Al powder in the presence of Al2O3 particles. Uniform distribution of nano-sized Al2O3 particles in the Al matrix could be achieved with increase in the reinforcement weight fraction. The microhardness of the composite increases with the increase of the reinforcement weight fraction and it reaches 94 HV at 10 wt% Al2O3 composite. The yield strength and ultimate strength of the composite are also increased by increasing the reinforcement weight fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Miracle D B, Compos Sci Technol 65 (2005) 2526.

    Article  Google Scholar 

  2. Torralba J M, da Costa C E, and Velasco F, J Mater Process Technol 133 (2003) 203.

    Article  Google Scholar 

  3. Prabhu B, Suryanarayana C, An L, and Vaidyanathan R, Mater Sci Eng A 425 (2006) 192.

    Article  Google Scholar 

  4. Lu L, and Zhang Y, J Alloys Compd 290 (1999) 279.

    Article  Google Scholar 

  5. Gubicza J, Kassem M, Ribarik G, and Ungár T, Mater Sci Eng A 372 (2004) 115.

    Article  Google Scholar 

  6. Khakbiz M, and Akhlaghi F, J Alloys Compd 479 (2009) 334.

    Article  Google Scholar 

  7. Lindahl P, Gustafson P, Rolander U, Stals L, and Andrn H O, Int J Refract Metal Hard Mater 17 (1999) 11.

    Article  Google Scholar 

  8. Wagih A, Int J Adv Eng Sci 4 (2014) 1.

    Google Scholar 

  9. Suryanarayana C, and Al-Aqeeli N, Prog Mater Sci 58 (2013) 383.

    Article  Google Scholar 

  10. Fogagnolo J B, Velasco F, Robert M H, and Torralba J M, Mater Sci Eng A 342 (2003) 131.

    Article  Google Scholar 

  11. Zebarjad S M, and Sajjadi S A, Mater Des 28 (2007) 2113.

    Article  Google Scholar 

  12. Lffler J, Weissmller J, and Gleiter H, Phys Rev B Condens Mater 52 (1995) 7076.

    Article  Google Scholar 

  13. Zhong Y, Ping D, Song X, Yin F, J Alloys Compd 476 (2009) 113.

    Article  Google Scholar 

  14. McCormick A L, Aghajanian M K, and Marshall A L, Adv Ceram Armor V (2010) 105.

  15. Bruno G, Ceretti M, Girardin E, Giuliani A, and Manescu A, Scr Mater 51 (2004) 999.

    Article  Google Scholar 

  16. ASTM E8/E8 M-13a. Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, West Conshohocken (2013).

  17. Williamson G, and Hall W, Acta Metal 1 (1953) 22.

    Article  Google Scholar 

  18. Scherrer P, Nachr Ges Wiss Gottingen 26 (1918) 98.

    Google Scholar 

  19. Crivello J C, Nobuki T, and Kuji T, Intermetallics 15 (2007) 1432.

    Article  Google Scholar 

  20. Cvijovic I, Vilotijevic M, and Milan T J, Mater Charact 57 (2006) 94.

    Article  Google Scholar 

  21. Miraghaei S, Abachi P, Madaah-Hosseini H, and Bahrami A, J Mater Process Technol 203 (2008) 554.

  22. Wagih A, Adv Powder Technol 26 (2015) 253.

    Article  Google Scholar 

  23. Rajkovic V, Bozic D, and Jovanovic M T, J Alloys Compd 459 (2008) 177.

    Article  Google Scholar 

  24. Rajkovic V, Bozic D, and Milan T J, Mater Des 31 (2010) 1962.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wagih.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagih, A. Synthesis of Nanocrystalline Al2O3 Reinforced Al Nanocomposites by High-Energy Mechanical Alloying: Microstructural Evolution and Mechanical Properties. Trans Indian Inst Met 69, 851–857 (2016). https://doi.org/10.1007/s12666-015-0570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0570-4

Keywords

Navigation