Skip to main content

Optimization of Micro-milling Parameters Regarding Burr Size Minimization via RSM and Simulated Annealing Algorithm

Abstract

In micro-machining process, there are a lot of factors that affect formation of burr along micro-component’s edges. Therefore, finding suitable machining parameters significantly reduces the burr size in micro-products. In the current work, experimental investigations have been performed to study effects of micro-milling parameters (i.e. cutting speed, feed rate and depth of cut) on burr height and burr thickness of the micro-grooves of 316 stainless steel in up milling and down milling operations. The aforementioned factors were varied over their working ranges while other parameters such as tool material, tool condition, lubrication etc. were kept constant. Here, experiments were designed and conducted based on three factors-three levels face centered central composite design. The response surface methodology (RSM) and analysis of variances were applied on generated data to correlate empirical relationships between micro-milling parameters and burr characteristics. Further, the developed RSM models was then associated with principal component analysis and simulated annealing to minimize burr characteristics in both up-milling and down-milling processes, simultaneously. According to optimization results, spindle speed of 15,000 RPM, feed rate 5 mm/tooth and depth of cut of 0.15 is the most optimal factor combination that causes minimum burr sizes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

Bhup :

Burr height in up milling

Btup :

Burr thickness in up milling

Bhdown :

Burr height in down milling

Btdown :

Burr thickness in down milling

RSM:

Response surface methodology

ANOVA:

Analysis of variances

N:

Spindle speed

F :

Feed rate

doc:

depth of cut

SEM:

Scanning electron microscopy

PCA:

Principal component analysis

SA:

Simulated annealing

References

  1. Chae J, Park S S, and Freiheit T, Int J Mach Manuf 46 (2006) 313.

    Article  Google Scholar 

  2. Dornfeld D A, Min S, and Takeuchi Y, CIRP Ann Manuf Technol 55 (2006) 745.

    Article  Google Scholar 

  3. Olvera O, and Barrow G, Int J Mach Tools Manuf 36 (1996) 15.

    Article  Google Scholar 

  4. Chern G, Analysis of Burr Formation and Breakout in Metal Cutting, Ph D Thesis, University of California, Berkeley (1993).

  5. Nakayama K, and Arai M, CIRP Ann Manuf Technol 36 (1987) 33.

    Article  Google Scholar 

  6. Ko S, and Dornfeld D A, J Mater Process Technol 62 (1996) 24.

    Article  Google Scholar 

  7. Litwinski K M, Min S, Lee D E, Dornfeld D A, and Lee N, Scalability of Tool Path Planning to Micro Machining, University of California, Berkeley (2006).

    Google Scholar 

  8. Lee K, Essel I, and Dornfeld D A, in Proc (2001).

  9. Gaitonde V N, Karnik S R, Achyutha B T, ans Siddeswarappa B, J Mater Process Technol 197 (2008) 225.

  10. Goplasamy MB, Mondal B,and Ghosh S, J Sci Ind Res 68 (2009) 686.

    Google Scholar 

  11. Mandal N, Doloi B, and Mondal B, Int J Refract Met Hard Mater 38 (2013) 40.

    Article  Google Scholar 

  12. Mandal N, Doloi B, and Mondal B, Int J Precis Eng Manuf 13 (2012) 1589.

    Article  Google Scholar 

  13. Mandal N, Doloi B, and Mondal B, J Refract Met Hard Mater 29 (2011) 273.

    Article  Google Scholar 

  14. Mandal N, Doloi B, Mondal B, and Das R, Measurement 44 (2011) 2149.

    Article  Google Scholar 

  15. Gopalsamy MB, Mondal B, Ghosh S, Arntz K, and Klocke F, Int J Mater Form 2 (2009) 145.

    Article  Google Scholar 

  16. Ghasemi-Baboly M, Aminian M, Leseman Z, and Teimouri R, Soft Comput 9 (2014) 205. doi 10.1007/S00500-014-1305-x

    Google Scholar 

  17. Pakseresht AH, Javadi AH, Nejati M, Shirvanimoghaddam K, Ghasali S, and Teimouri R Int J Adv Manuf Technol 75 (2014) 739.

    Article  Google Scholar 

  18. Marzban J, Ghaseminejad P, Ahmadzadeh MH, and Teimouri R, Int J Adv Manuf Technol, 76 (2014) 1163. doi 10.1007/s00170-014-6338-x

    Google Scholar 

  19. Babajanzade-Roshan S, Behboodi-Jooibari M, Teimouri R, Asgharzade-Ahmadi G, Falahati-Naghibi M, and Sohrabpoor H, Int J Adv Manuf Technol 69 (2013) 1803.

    Article  Google Scholar 

  20. Lee K, and Dornfeld D A, Precis Eng 29 (2005) 246.

    Article  Google Scholar 

  21. Zaman, M T, Kumar S A, Rahman M, and Sreeram S, Int J Machine Manuf 46 (2006) 353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Teimouri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khanghah, S.P., Boozarpoor, M., Lotfi, M. et al. Optimization of Micro-milling Parameters Regarding Burr Size Minimization via RSM and Simulated Annealing Algorithm. Trans Indian Inst Met 68, 897–910 (2015). https://doi.org/10.1007/s12666-015-0525-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0525-9

Keywords

  • Micro-milling
  • Burr characteristics
  • RSM
  • Optimization
  • Simulated annealing