Skip to main content

Advertisement

Log in

Effect of Thermal Aging on Microstructure and Mechanical Properties of P92 Steel

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Microstructure and mechanical properties of P92 steel in the normalized and tempered, and thermal aged at 923 K for 5,000 h conditions have been investigated. Laves phase (size of ~0.160 µm) was observed in the thermal aged steel. Tensile tests were carried out at a strain rate of 3 × 10−4 s−1 and in the temperature range of 300–923 K. Both in the normalized and tempered, and thermal aged conditions, yield stress and ultimate tensile strength of the steels were found to decrease with increase in test temperatures. Tensile strengths of the thermal aged steel were decreased significantly in all test temperatures in comparison with normalized and tempered condition. Tensile strengths of thermal aged steel decreased due to sub-structure recovery and loss of solid solution strengthening from tungsten. Creep tests were conducted at 923 K in the stress range of 130–110 MPa. Lower creep rupture life has been observed in the thermal aged steel than normalized and tempered steel at higher stress level. Creep rupture life of thermal aged steel was comparable with steel in the normalized and tempered condition at lower stress levels. The presence of Laves phase precipitates in thermal aged steel has compensated the creep strength decrement due to loss of tungsten and sub-structure recovery in the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Laha K, Chandravathi K S, Parameswaran P, Bhanu Sankara Rao K, and Mannan S L, Metal Mater Trans A 38A (2007) 58.

    Article  Google Scholar 

  2. Ennis P J, Zielinska-Lipiec A, Wachter O, and Czyrska-Filemonowicz A, Acta Mater 45 (1997) 4901.

    Article  Google Scholar 

  3. Maruyama K, Sawada K, and Koike J, Iron Steel Inst Japan Int 41 (2001) 641.

    Article  Google Scholar 

  4. yrostkov´a A V´, Homolov´a V, Pecha J, and Svoboda M, Mater Sci Eng A 480 (2008) 289.

    Article  Google Scholar 

  5. Dudko V, Belyakov A, Molodov D, and Kaibyshev R, Metal Mater Trans A 44A (2013) S162.

    Article  Google Scholar 

  6. Fedorova I, Kipelova A, Belyakov A, and Kaibyshev R, Metal Mater Trans A 44A (2013) S128.

    Article  Google Scholar 

  7. Abe F, Mater Sci Eng A319321 (2001) 770.

    Article  Google Scholar 

  8. Sawada K, Kubo K, and Abe F, Mater Sci Eng A319321 (2001) 784.

    Article  Google Scholar 

  9. Pe´try C, and Lindet G, Int J Press Vessels Pip 86 (2009) 486.

    Article  Google Scholar 

  10. Korcakova L, Hald J, and Somers M A J, Mater Charact 47 (2001) 111.

    Article  Google Scholar 

  11. Lee J S, Armaki H G, Maruyama K, Muraki T, and Asahi H, Mater Sci Eng A 428 (2006) 270.

    Article  Google Scholar 

  12. Masuyama F, Int J Press Vessels Pip 87 (2010) 617.

    Article  Google Scholar 

  13. Sawada K, Hongo H, Watanabe T, and Tabuchi M, Mater Charact 61 (2010) 1097.

    Article  Google Scholar 

  14. Klueh R L, Int Mater Rev 50 (2005) 287.

    Article  Google Scholar 

  15. Naoi H, Ohgami M, Araki S, Ogawa T, Yasuda H, Masumoto H, and Fujita T, Development of High-Strength Ferritic Steel NF616 for Boiler Tubes, Nippon Steel Technical Report, No. 50 (1991), p 7.

  16. Ohgami M, Mimura H, Naoi H, Ikemoto T, Kinbara S, and Fujita T, Nippon Steel Technical Report, No.72 (1997), p 59.

  17. Kim B, and Lim B, Int J Mod Phys B 20 (2006) 4231.

    Article  Google Scholar 

  18. Sakthivel T, Vasudevan M, Laha K, Parameswaran P, Chandravathi K S, Panneer Selvi S, Maduraimuthu V, and Mathew M D, Mater Sci Eng A 591 (2014) 111.

    Article  Google Scholar 

  19. Guo X, Gong J, Jiang Y, and Rong D, Mater Sci Eng A 564 (2013) 199.

    Article  Google Scholar 

  20. Abe F, Sci Technol Adv Mater 9 (2008) 013002.

    Article  Google Scholar 

  21. Rodriguez P, Bull Mater Sci 6 (1984) 653.

    Article  Google Scholar 

  22. Frost H J, and Ashby M F, Deformation-Mechanism Maps-the Plasticity and Creep of Metals and Ceramics, 1st ed., Pergamon Press, New York (1982), p 62.

  23. Mukherjee A K, Bird J E, and Dorn J E, ASTM Trans Quart 52 (1969) 155.

    Google Scholar 

  24. Lagneborg R, and Bergman B, Metal Sci J 10 (1976) 20.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. P.R. Vasudeva Rao, Director, Indira Gandhi Centre for Atomic Research, Dr. T. Jayakumar, Director, Metallurgy and Materials Group and Dr. A.K. Bhaduri, Associate Director, Materials Development and Technology Group, for their keen interest in the work and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sakthivel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthivel, T., Laha, K., Parameswaran, P. et al. Effect of Thermal Aging on Microstructure and Mechanical Properties of P92 Steel. Trans Indian Inst Met 68, 411–421 (2015). https://doi.org/10.1007/s12666-014-0480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0480-x

Keywords

Navigation