Skip to main content
Log in

Multi Response Optimization for Processing Al–SiCp Composites: An Approach Towards Enhancement of Mechanical Properties

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present study illustrates the manufacturing aspects of composite with different wt% of SiC particulates as reinforcement in the aluminum alloy matrix developed through investment casting route. The composites were prepared by varying certain process parameters like preheating temperature of particulates, percentage reinforcement and stirring speed. Detailed micro-structural characterization and estimation of mechanical properties (viz., strength, hardness and porosity measurement) are necessary supplements to this investigation. A mathematical model is developed using regression analysis technique for prediction of optimum process parameters viz. percentage reinforcement, preheating temperature of particulates and stirring speed for producing MMCs with enhanced mechanical properties and adequacy of the model has been validated using analysis of variance techniques. Finally the optimization of parameters has also been done using design expert software. The authors have achieved 81.56 % desirability level using multi-response optimization; the optimum value of process parameters would lead to enhanced mechanical properties of cast component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kumar S, and Balasubramanian V, Tribol Int 43 (2010) 414.

    Article  Google Scholar 

  2. Min S T, Trans Nonferrous Metal Soc 19 (2009) 1400.

    Article  Google Scholar 

  3. Mantaux O, Lacoste E, and Danis M, Compos Sci Technol 62 (2002) 1801.

    Article  Google Scholar 

  4. Lee P D, Chirazi A, and See D, J Light Met 1 (2001) 15.

    Article  Google Scholar 

  5. Mandal N, Roy H, Mondal B, Murmu N C, and Mokhopadhyay S K, J Mater Eng Perform 21 (2012) 17.

    Article  Google Scholar 

  6. Taha A M, Mater Manuf Process 16 (2007) 619.

    Article  Google Scholar 

  7. Cabrera O, Ramirez M, Campillo B, and Gonzalezrivera C, Mater Manuf Process 23 (2008) 46.

    Article  Google Scholar 

  8. Miller W S, and Humphreys F J, J Scr Mater 25 (1991) 33.

    Article  Google Scholar 

  9. Ramu G, and Buari R, J Mater Des 30 (2009) 3554.

    Article  Google Scholar 

  10. Pavan R C, Creus G J, and Maghous S, J Compos Struct 91 (2009) 84.

    Article  Google Scholar 

  11. Li Y M, and Li R D, Sci Technol Adv Mater 2 (2001) 277.

    Article  Google Scholar 

  12. Mondal B, Kundu S, Lohar A K, and Pai B C, Mater Sci Eng A 498 (2008) 37.

    Article  Google Scholar 

  13. Wang S, Miranda A G, and Shih C, Mater Manuf Process 25 (2010) 1482.

    Article  Google Scholar 

  14. Pal D, and Ravi B, Virtual Phys Prototyp 2 (2007) 197.

    Article  Google Scholar 

  15. Sajjadi S A, Ezatpour H R, and Beygi H, Mater Sci Eng A 528 (2011) 8765.

    Article  Google Scholar 

  16. Kok M, J Mater Process Technol 161 (2005) 381.

    Article  Google Scholar 

  17. Tham L M, Gupta M, and Cheng L, J Mater Process Technol 89-90 (1999) 128.

    Article  Google Scholar 

  18. Shasha Y, Peng Z, Yunhui Du, Jun Z, and Xiaopeng L, China Foundry 02 (2012) 154.

    Google Scholar 

  19. Singh L, Ram B, and Singh A, Int J Res Eng Technol 02 (2013) 375.

    Article  Google Scholar 

  20. Singh D, Singh H, Kumar S, and Singh G, Int J Emerg Technol 204 (2012) 178.

    Google Scholar 

  21. Muhammed O S, Saleh H P, and Alwan H L, Eng Technol J 27 (2009) 1143.

    Google Scholar 

  22. Giri B K, Pettersson F, Saxén H, Chakraborti N, and Giri B K, Mater Manuf Process 28 (2013) 776.

    Article  Google Scholar 

  23. Giri B K, Hakanen J, and Miettinen K, Appl Soft Comput 13 (2013) 2613.

    Article  Google Scholar 

  24. Niranjan K, and Lakshminarayanan P R, Ttans Nonferrous Metal Soc 23 (2013) 1269.

    Article  Google Scholar 

  25. Hang S J, Kim H M, Huh D, Suryanarayana C, and Chun B S, Mater Sci Eng A 347 (2003) 198.

    Article  Google Scholar 

  26. Zhang H, Geng L, Guan L, and Huang L, Mater Sci Eng A, 528 (2010) 513.

    Article  Google Scholar 

  27. Yang G, Fan T, and Zhang D, J Mater Sci 39 (2004) 3689.

    Article  Google Scholar 

  28. Prabu S B, Karunamoorthy L, Kathiresan S, and Mohan B, J Mater Process Technol 171 (2006) 268.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Pijush Pal Roy, Director, CSIR-Central Mechanical Engineering Research Institute, Durgapur for his constant source of inspiration in writing this paper. The authors also acknowledge the financial support from Council of Scientific & Industrial Research, New Delhi to carry out the research work. The authors are also gratefully acknowledged all the staff members of CAMP group for their continuous effort in the experimentation part of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, H., Mandal, N., Roy, H. et al. Multi Response Optimization for Processing Al–SiCp Composites: An Approach Towards Enhancement of Mechanical Properties. Trans Indian Inst Met 68, 453–463 (2015). https://doi.org/10.1007/s12666-014-0476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0476-6

Keywords

Navigation