Skip to main content
Log in

The Effect of Yttrium Addition on the Microstructure and Mechanical Properties of Mg Alloys

  • Review Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Automotive and aerospace industries shall witness advancement to the next generation if magnesium (Mg) alloys become an integral part of their manufacturing unit primarily because of its light weight. The main limitation which hinders the progress in this direction is the inferior creep properties of Mg alloys. In order to transform this expectation into reality, rare earth (RE) elements are extensively used as alloying elements for improving the room temperature (RT) as well as high temperature (HT) properties. Yttrium (Y) is one of the most extensively used RE elements primarily because of its very high solubility in Mg. Many researchers have studied the influence of Y addition in Mg alloys because of its very high solubility in Mg. However, there is a need to consolidate the work that has been carried out so far which will help in interpolating the future prospects. This review consolidates the work that has been carried out so far in Y addition covering various aspects related to microstructural modifications and RT as well as HT mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu R Z, Qu Z K, and Zhang M L, Rev Adv Mater Sci 24 (2010) 35.

    Google Scholar 

  2. Hassan S F, Ho K F, and Gupta M, Mater Lett 6 (2004) 2143.

    Article  Google Scholar 

  3. Shin-ichi Y, Hyang-Yeon K, Hisamichi K, Akihisa I, and Yoshiaki A, J Alloys Compd 12 (2002) 239.

    Google Scholar 

  4. Gang S, Keyna O, Brian C, John W, and Richard H, Mater Sci Eng A 5 (2001) 612.

    Google Scholar 

  5. Lu L, Lai M O, and Hoe M L, Nat Mater 4 (1998) 551.

    Google Scholar 

  6. Chi H Z, Chen C P, Chen L X, and Wang D Q, J Alloys Compd 10 (2003) 312.

    Article  Google Scholar 

  7. Zhao D X, Liu Y H, Shen D Z, Zhang Y J, Lu Y M, and Fan X W, J Cryst Growth 2 (2003) 163.

    Article  Google Scholar 

  8. Wang Q D, Lu Y Z, Zeng X Q, Ding W J, Zhu Y P, Li Q H, and Lan J, Mater Sci Eng A 11 (1999) 109.

    Google Scholar 

  9. Socjusz-Podosek M, and Lity´nska L, Mater Chem Phys 80 (2003) 472.

    Article  Google Scholar 

  10. Penga Q, Mengb J, Lic Y, Huanga Y, and Hort N, Mater Sci Eng A, 528 (2011) 2106.

    Article  Google Scholar 

  11. Gao L, Chen R, and Han E, J Alloys Compd 481 (2009) 379.

    Article  Google Scholar 

  12. Luo A A, Int Mater Rev 49 (2003) 13.

    Article  Google Scholar 

  13. Blum W, Watzinger B, and Zhang P, Adv Eng Mater 2 (2000) 349.

    Article  Google Scholar 

  14. Wu G, Fan Y, Gao H, Zhai C, and Zhu Y P, Mater Sci Eng A 408 (2005) 255.

    Article  Google Scholar 

  15. Terada Y, Ishimatsu N, Sato R, Sato T, and Ohori K, Mater Sci Forum 419 (2003) 181.

  16. Wenliang R, Quan’an L, Jianhong L, Kejie L, and Xingyuan Z, China Foundry 7 (2010) 362.

    Google Scholar 

  17. Wang S R, Guo P, Yang L Y, and Wang Y, J Mater Eng Perform 18 (2009) 137.

    Article  Google Scholar 

  18. Zhu S M, Gibson M A, Nie J F, Easton M A, and Abbott T B, Scr Mater 58 (2008) 477.

    Article  Google Scholar 

  19. B. Amir Esgandari B, Mehrjoo H, Nami B, and Miresmaeili S M, Mater Sci Eng A 528 (2011) 5018.

  20. Chu-ming L, Xiu-rong Z, and Hai-tao Z, Phase Diagrams for Magnesium Alloys [M], Central South University Press, Changsha (2006).

    Google Scholar 

  21. Nayyeri G, and Mahmudi R, Mater Sci Eng A 527 (2010) 669.

    Article  Google Scholar 

  22. Xiao-feng H, Qu-dong W, Xiao-qin Z, Guang-yin Y, Yan-ping Z, and Wei-jiang D, J Chin Rare Earth Soc 22 (2004) 493.

    Google Scholar 

  23. Fu-sheng P, Mei-bao C, Jing-feng W, Jian P, and Ai-tao T, Trans Nonferrous Met Soc China 18 (2008) s1.

    Article  Google Scholar 

  24. Luo Z P, Song D Y, and Zhang S Q, J Alloys Compd 230 (1995) 109.

    Article  Google Scholar 

  25. Lee Y C, Dahle A K, and St John D H, Metall Mater Trans A 31 (2000) 2895.

    Article  Google Scholar 

  26. Hongmei L, Yungui C, Yongbai T, Deming H, Min Z, and Yiguo L, J Sichuan Univ 38 2006 90.

    Google Scholar 

  27. Dahle A K, Lee Y C, Nave M D, Schaffer P L, and St John D, J Light Met 1 (2001) 61.

    Article  Google Scholar 

  28. Polmear I, Light Alloys From Traditional Alloys to Nanocrystals, Butterworth- Heinemann, Boston (2006).

  29. Shengfa L, Huiyuan W, Liugen K, Shangyu H, and Ping X, Chin J Nonferrous Met 16 (2006) 464.

    Google Scholar 

  30. Zhenhua C Wrought Magnesium Alloy, Chemical Industry Press, Beijing, (2007) 25.

    Google Scholar 

  31. Jun C, Quanan L, Jianghong L, Xiaofeng L, Kejie L, and Xingyuan Z, China Foundry 6 (2008) 124.

    Google Scholar 

  32. Mingxing W, Hong Z, and Wang L, J Rare Earth 25 (2007) 233.

    Article  Google Scholar 

  33. Xi-ya F, Dan-qing Y, Bin W, Wen-hai L, and Wei L, Trans Nonferrous Met Soc China 16 (2006) 1053.

    Article  Google Scholar 

  34. Gang C, Xiao-dong P, Pei-geng F, Wei-dong X, Qun-yi W, Hong M A, and Yan Y, Trans Nonferrous Met Soc China 21 (2011) 725.

    Article  Google Scholar 

  35. Padezhnova E M, Mel’nik E V, Miliyevskiy R A, Dobatkina T V, and Kinzhibao V V, Russ Metall 4 (1982) 185.

    Google Scholar 

  36. Luo Z P, and Zhang S Q, J Mater Sci Lett 12 (1993) 1490.

    Google Scholar 

  37. Janot C, Quasicrystals, Clarendon Press, Oxford (1994).

    Book  Google Scholar 

  38. Pierce F S, Poon S J, and Guo Q, Science 261 (1993) 737.

    Article  Google Scholar 

  39. Dubois J M, Plaindoux P, Berlin-Ferre E, Tamura N, and Sordelet D J, Proceedings of the Sixth International Conference on Quasicrystals, World Scientific, Singapore (1997).

  40. Xu D K, Liu L, Xu Y B, and Han E H, J Alloys Compd 426 (2006) 155.

    Article  Google Scholar 

  41. Xua D K, Tang W N, Liu L, Xu Y B, and Han E H, J Alloys Compd 461 (2008) 248.

    Article  Google Scholar 

  42. Lee Y J, Kim D H, Lim H K, and Kim D H, Mater Lett 59 (2005) 3801.

    Article  Google Scholar 

  43. Zhang E, He W, Du H, and Yang K, Mater Sci Eng A 488 (2008) 102.

    Article  Google Scholar 

  44. Xu D K, Tang W N, Liu L, Xu Y B, and Han E H, J Alloys Compd 432 (2007) 129.

    Article  Google Scholar 

  45. Bhan S, and Lal A, J Phase Equilib 14 (1993) 634.

    Article  Google Scholar 

  46. Zhou H T, Zhang Z D, Liu C M, and Wang Q W, Mater Sci Eng A 445446 (2007) 1.

    Article  Google Scholar 

  47. Zhang Y, Zeng X, Liu L, Lu C, Zhou H, Li Q, and Zhu Y, Mater Sci Eng A 373 (2004) 320.

    Article  Google Scholar 

  48. Ma C, Liu M, Wu G, Ding W, and Zhu Y, Mater Sci Eng A 349 (2003) 207.

    Article  Google Scholar 

  49. Hong-hui Z, Trans Nonferrous Met Soc China 18 (2008) 580.

    Article  Google Scholar 

  50. Li Q, Wang Q D, Wang Y X, Zeng X Q, and Ding W J, J Alloys Compd 427 (2007) 115.

    Article  Google Scholar 

  51. Xu D K, Liu L, Xu Y B, and Han E H, Mater Sci Eng A 443 (2007) 248.

    Article  Google Scholar 

  52. Zou H, Zeng X, Zhai C, and Ding W, Mater Sci Eng A 402 (2005) 142.

    Article  Google Scholar 

  53. Yun B, Can-feng F, Hai H, Guo-hong Q I, and Xing-guo Z, Trans Nonferrous Met Soc China 20 (2010) s357.

    Article  Google Scholar 

  54. Kondori B, and Mahmudi R, Mater Sci Eng A 527 (2010) 2014.

    Article  Google Scholar 

  55. Mahmudi R, Kabirian F, and Nematollahi Z, Mater Des 32 (2011) 2583.

    Article  Google Scholar 

  56. Rzychon T, and Kielbus A, JAMME 7 (2006) 149.

    Google Scholar 

  57. Dargusch M S, Dunlop G L, and Pettersen K, in: Mordike B L, and Kainer K U (Eds), Magnes Alloys Appl, Frankfurt (1998).

    Google Scholar 

  58. Zhi-wei H, Yu-hui Z, Hua H, Yu-hong Z, Xiao-feng N, and Pei-de H, J Cent South Univ 19 (2012) 1475.

    Article  Google Scholar 

  59. Feng W, Yue W, Ping-li M, Bao-yi Y U, and Quan-ying G, Trans Nonferrous Met Soc China 20 (2010) s311.

    Article  Google Scholar 

  60. Boby A, Ravikumar K K, Pillai U T S, and Pai B C, Proc Eng 55 (2013) 98.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Ministry of Human Resource Development, Government of India for the fellowship to the first author and members of Light Meatl Alloys and Composites group for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavish Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, L.K., Srinivasan, A., Pillai, U.T.S. et al. The Effect of Yttrium Addition on the Microstructure and Mechanical Properties of Mg Alloys. Trans Indian Inst Met 68, 331–339 (2015). https://doi.org/10.1007/s12666-014-0464-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0464-x

Keywords

Navigation