Skip to main content
Log in

Mechanical Properties of a Hybrid Nanocomposite Under Room Temperature and Hot-Wet Environments

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A thermosetting epoxy resin was hybrid modified by addition of 9 wt% of rubber micro-particles and 10 wt% of silica nanoparticles. Glass fiber reinforced plastic (GFRP) composite laminates employing the unmodified (GFRP-neat) and the hybrid modified (GFRP-hybrid) epoxy matrix was fabricated. Mechanical properties viz., tension, compression, Interlaminar shear strength, and flexure, were determined for these GFRP composites in both room temperature (RT) and in hot-wet (HW) conditions. All the mechanical tests were conducted following their respective ASTM test standard specifications. Prior to testing, HW specimens were hygrothermally aged until moisture absorption saturation was attained. The GFRP-hybrid composite absorbs moisture at a higher rate and saturates with higher moisture content than that by GFRP-neat composite. The hybrid modification of epoxy matrix of GFRP composite alters the mechanical properties in RT by about +6 to −12 % and in HW conditions by about +3 to −9 %, depending on the specific property. The degradation of mechanical properties due to moisture varies from about 0 to 23 % in both GFRP composites. Dramatic improvement of over 160 % in fracture toughness and over 400 % in fatigue life of GFRP-hybrid composite reported earlier, appear to more than compensate for minor alterations in other mechanical properties of this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thostenson ET, Li C and Chou TW, Comp Sci Tech 65 (2005) 491.

    Article  Google Scholar 

  2. Hussain F, Hojjati M, Okamoto M and Gorga RE, J Comp Mater 40 (2006) 1511.

    Article  Google Scholar 

  3. Ma J, Mo MS, Du XS, Rosso P, Friedrich K and Kuan HC, Polymer 49 (2008) 3510.

    Article  Google Scholar 

  4. Yazhou Guo and Yulong Li, Mater Sci Eng A458 (2007) 330.

    Article  Google Scholar 

  5. Chisholm N, Mahfuz H, Rangari VK, Ashfaq A, and Jeelani S, Compos Struct 67 (2005) 115.

    Article  Google Scholar 

  6. Su Zhao, Linda, S. Schadler, Henrik Hillborg and Tommaso Auletta, Compos Sci Tech 68 (2008) 2976.

    Article  Google Scholar 

  7. Wetzel B, Rosso P, Haupert F and Friedrich K, Eng Fract Mech 73 (2006) 2375.

    Article  Google Scholar 

  8. Gojny FH, Wichmann MHG, Fiedler B, Bauhofer W and Schulte K, Compos A Appl Sci Manufac 36 (2005) 1525.

    Article  Google Scholar 

  9. Spitalsky Z, Tasis D, Papagelis K and Galiotis C, Prog Polym Sci 35 (2010) 357.

    Article  Google Scholar 

  10. Zhou Y, Pervin F, Jeelani S and Mallick PK, J Mater Proc Tech 198 (2008) 445.

    Article  Google Scholar 

  11. Zhou Y, Rangari V, Mahfuz H, Jeelani S and Mallick PK, Mater Sci Engg A402 (2005) 109.

    Article  Google Scholar 

  12. Khan SU, Munir A, Hussain R and Kim JK, Compos Sci Tech 70 (2010) 2077.

    Article  Google Scholar 

  13. Zhou Y, Hosur M, Jeelani S and Mallick P, J Mater Sci 47 (2012) 5002.

    Article  Google Scholar 

  14. Cho J, Chen JY and Daniel IM, Scr Mater 56 (2007) 685.

    Article  Google Scholar 

  15. Rafiee MA, Yavari F, Rafiee J and Koratkar N, J Nano Part Res 13 (2011) 733.

    Article  Google Scholar 

  16. Adachi T, Osaki M, Araki W and Kwon SC, Acta Mater 56 (2008) 2101.

    Article  Google Scholar 

  17. Wang G-T, Liu H-Y, Saintier N and Mai Y-W, Eng Fail Analy 16 (2009) 2635.

    Article  Google Scholar 

  18. Liang YL and Pearson RA, Polymer 51 (2010) 4880.

    Article  Google Scholar 

  19. Kinloch AJ, Mohammed RD,Taylor AC, Eger C, Sprenger S and Egan D, J Mater Sci 40 (2005) 5083.

    Article  Google Scholar 

  20. Kinloch AJ, Mohammed RD,Taylor AC, Sprenger S and Egan DJ, J Mater Sci 41 (2006) 5043.

    Article  Google Scholar 

  21. Kinloch AJ, Masania K, Taylor AC, Sprenger S and Egan D, J Mater Sci 43 (2008) 1151.

    Article  Google Scholar 

  22. Manjunatha CM, Sprenger S, Taylor AC and Kinloch AJ, J Compos Mater 44 (2010) 2095.

    Article  Google Scholar 

  23. Böger L, Sumfleth J, Hedemann H and Schulte K, Compos A Appl Sci Manufact 41 (2010) 1419.

    Article  Google Scholar 

  24. Li J, Wong PS and Kim JK, Mater Sci Eng A 483 (2008) 660.

    Article  Google Scholar 

  25. Manjunatha CM, Ramesh Bojja, Jagannathan N, Kinloch AJ and Taylor AC, Int J Fat 54 (2013) 25.

    Article  Google Scholar 

  26. G.S Springer, “Environmental effects on composite materials”, (ed), Springer GS, Lancaster, PA: Technomic Publishing company Inc., vol. 3, pp 1–34.

  27. Sharma B, Mahajan S, Chhibber R and Mehta R. Procedia Chemistry 2012. doi:10.1016/j.proche.2012.06.006.

  28. Alamri H and Low IM. Mater Des 42:(2012) 214.

  29. Alamri H and Low IM, Compos A Appl Sci Manufact 44 (2013) 23.

    Article  Google Scholar 

  30. Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials, ASTM D5229 M, Annual book of ASTM Standards, American Society for Testing and Materials, PA, Vol. 15.03, (2003).

  31. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM D3039, Annual book of ASTM Standards, American Society for Testing and Materials, PA, Vol. 15.03, (2003).

  32. Standard Test Method for Compression Properties of Polymer Matrix Composite Materials, ASTM D3410, Annual book of ASTM Standards, American Society for Testing and Materials, PA, Vol. 15.03, (2003).

  33. Standard Test Method for Ilss Polymer Matrix Composite Materials, ASTM D2344, Annual book of ASTM Standards, American Society for Testing and Materials, PA, Vol. 15.03, (2003).

  34. Standard Test Method for Flexure Properties of Polymer Matrix Composite Materials, ASTM D790, Annual book of ASTM Standards, American Society for Testing and Materials, PA, Vol. 15.03, (2003).

  35. Uddin MF and. Sun CT, Compos Sci Tech 68 (2008) 1637.

    Article  Google Scholar 

  36. Manjunatha CM, Taylor AC, Kinloch AJ and Sprenger S, Compos Sci Tech 70 (2010) 193.

    Article  Google Scholar 

  37. Shao-Yun Fu, Xi-Qiao Feng, Bernd Lauke and Yiu-Wing Mai, Compos B: Eng 39 (2008) 933.

    Article  Google Scholar 

  38. Dadfar MR and Ghadami F, Mater Des 47 (2013) 16.

    Article  Google Scholar 

  39. Garima Tripathi and Deepak Srivastava, Mater Sci Eng A 443 (2007) 262.

    Article  Google Scholar 

  40. Manjunatha CM, Taylor AC, Kinloch AJ and Sprenger S, J Reinf Plast Compos 29 (2010) 2170.

    Article  Google Scholar 

  41. Rao RMVGK, Balasubramanian N and Chanda M, J Reinf Plast Compos 3 (1984) 232.

    Article  Google Scholar 

  42. Shylaja S and Rao RMVGK, J Reinf Plast Compos 18 (1999) 921.

    Google Scholar 

  43. Cunha JAP, Costa ML and Rezende MC, Latin Am J Solids Struct 5 (2008) 157.

    Google Scholar 

  44. Iain McEwana, Pethricka RA and Stephen JS, Polymer 40 (1999) 4213.

    Article  Google Scholar 

  45. Chen Zou, Fothergillm JC, Rowe SW, IEEE Trans Dielect Electr Insul 15 (2008) 106.

    Article  Google Scholar 

  46. Santhosh M, Deepika R, Revathi A, Prakash MR, Shylaja S and Rao RMVGK, J Reinf Plast Compos 23 (2004) 1883.

    Article  Google Scholar 

  47. Shen, CH and Springer GS, J Compos Mater 10 (1976) 2.

    Article  Google Scholar 

  48. B.DeNève, Shanahan MER, Polymer 34 (1993) 5099.

    Article  Google Scholar 

Download references

Acknowledgments

Authors wish to thank Mr. Shyam Chetty, Director, Dr. G.N. Dayananda, Head, CSMST and Dr. Satish Chandra, Head, STTD, NAL, Bangalore for their support and encouragement during this work. Part of this work was carried out in the Department of Mechanical Engineering, Imperial College, London, UK. The support from Prof. AJ Kinloch and Dr. AC Taylor are acknowledged with thanks. The authors would also like to thank all the technical support staff members of the Dept. of Mech. Engg. and the Composite Centre of Dept. of Aeronautics, Imperial College London, staff members, STTD and CSMST, CSIR-NAL, Bangalore for their assistance in the experimental studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Manjunatha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagannathan, N., Bojja, R., Revathi, A. et al. Mechanical Properties of a Hybrid Nanocomposite Under Room Temperature and Hot-Wet Environments. Trans Indian Inst Met 68, 363–369 (2015). https://doi.org/10.1007/s12666-014-0463-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0463-y

Keywords

Navigation