Skip to main content
Log in

Correlation of Ionic Conductivity of Lithium Borosilicotitanate Glasses with Structure

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Lithium ion conducting glasses containing TiO2 have been prepared by the conventional melt quenching technique. Electrical conductivity σdc, activation energy Ea, density ρ, molar volume Vm, coefficient of thermal expansion (CTE) and glass transition temperature Tg for all the glass samples were measured. The variation of electrical conductivity with addition of TiO2 in lithium borosilicate system has been studied. The FTIR spectroscopy has been used for structural studies of these glasses. The decrease in conductivity with the addition of TiO2 at the cost of modifier Li2O is explained on the basis of changes in glass structure revealed by the IR spectrum which is also supported by the Tg, density and CTE variation. The electrical modulus spectra of the glasses have been studied to understand the conduction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Minami T, J Non-Cryst Solids 95&96 (1987) 107.

    Article  Google Scholar 

  2. Tatsumisago M, and Minami T, Mater Chem Phys 18 (1987) 1.

    Article  Google Scholar 

  3. Hashimoto T, Uchida H, Takagi I, Nasu H, and Kamiya K, J Non-Cryst Solids 253 (1990) 30.

    Article  Google Scholar 

  4. Antonyuk B P, Novikona N N N, Didenko N V, and Aktsipetrov O A, Phys Lett A 287 (2001) 161.

    Article  Google Scholar 

  5. Xu Lu J, Chen H, Liu L, Wang W, Zhu C, and Gan F, Opt Mater 8 (1997) 243.

  6. Koudelka L, Mosner P, Zeyer M, and Jager C, J Non-Cryst Solids 326 (2003) 72.

    Article  Google Scholar 

  7. Darwish H, and Gomaa M M, J Mater Sci 17 (2006) 35.

    Google Scholar 

  8. Knauth P, Solid State Ionics 180 (2009) 911.

    Article  Google Scholar 

  9. Martin S W, Bain D, Budhwani K, and Feller S, J Am Ceram Soc 75 (1992) 1117.

    Article  Google Scholar 

  10. Kluvanek P, Klement R, and Karacon M, J Non-Cryst Solids 353 (2007) 2004.

    Article  Google Scholar 

  11. Kim Y H, Yoon M Y, Lee E J, and Hwang H J, J Ceram Process Res 13 (2012) s37.

    Google Scholar 

  12. Deshpande A V, and Deshpande V K, Solid State Ionics 177 (2006) 2747.

    Article  Google Scholar 

  13. Deshpande A V, and Paighan N S, in Proc Solid State Ionics New Materials for Pollution free Energy Devices, (eds) Chowdari B V R et al., Macmillan India Ltd. (2008) p 349.

  14. Sakka S, Miyagi F, and Fukumi K, J Non-Cryst Solids 112 (1989) 64.

    Article  Google Scholar 

  15. Kusabiraki K, J Non-Cryst Solids 95&96 (1987) 411.

    Article  Google Scholar 

  16. Cheng S C, J Non-Cryst Solids 354 (2008) 3735.

    Article  Google Scholar 

  17. Charles R J, J Appl Phys 32 (1961) 1115.

    Article  Google Scholar 

  18. Greegor R B, Lytle F W, Sandstrom D R, Wong J, and Schultz P, J Non-Cryst Solids 55 (1983) 27.

    Article  Google Scholar 

  19. Inoue K, Sakida S, Nanba T, and Miura Y, Mater Sci Technol (MS&T) 1 (2006) 583.

  20. Tuller H L, and Button D P, in 6th RISO International Symposium on Metallurgy and Materials Science (1985) p 119.

  21. Berkemeier F, Voss S, Imre A W, and Mehrer H, J Non-Cryst Solids 351 (2005) 3816.

    Article  Google Scholar 

  22. Chryssikos G D, Kamitsos E I, and Patsis A P, J Non-Cryst Solids 202 (1996) 222.

    Article  Google Scholar 

  23. Marfels H, Glastechn Ber 42 (1969) 161.

    Google Scholar 

  24. Tarte P, Silic Ind 28 (1963) 345.

    Google Scholar 

  25. Chandrasekhar H R, Chandrasekhar M, and Manghnani M N, Solid State Commun 31 (1979) 329.

    Article  Google Scholar 

  26. Yasong Z, and Guowei J, Chin J Chem Eng 10 (2002) 349.

    Google Scholar 

  27. Li Z, Hou B, Xu Y, Wu D, Sun Y, Hu W, and Deng F, J Solid State Chem 178 (2005) 1395.

    Article  Google Scholar 

  28. Julien C, Massot M, Balkanski M, Krol A, and Nazarewiczn W, Mater Sci Eng B 3 (1989) 307.

    Article  Google Scholar 

  29. Wu H F, Lin C C, and Shen P, J Non-Cryst Solids 209 (1997) 76.

    Article  Google Scholar 

  30. Kamitsos E I, Patsis A P, Karakassides M A, and Chryssikos G D, J Non-Cryst Solids 126 (1990) 52.

    Article  Google Scholar 

  31. Macdonald J R (ed), Impedance Spectroscopy, Wiley, New York (1987).

    Google Scholar 

  32. Macedo P B, Moynihan C T, and Bose R, Phys Chem Glasses 13 (1972) 171.

    Google Scholar 

  33. Bhattacharya S, and Ghosh A, Solid State Ionics 161 (2003) 61.

    Article  Google Scholar 

  34. Bhattacharya S, and Ghosh A, Solid State Ionics 176 (2005) 1243.

    Article  Google Scholar 

  35. Reddy N C, Gowda V C, and Sujatha B, Ionics 12 (2006) 159.

    Article  Google Scholar 

  36. Ali A A, and Shaaban M H, Solid State Sci 12 (2010) 2148.

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (N.S.S.) wishes to express sincere thanks to V.N.I.T., Nagpur for granting Ph.D. fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Satpute.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satpute, N.S., Deshpande, A.V. Correlation of Ionic Conductivity of Lithium Borosilicotitanate Glasses with Structure. Trans Indian Inst Met 68, 269–274 (2015). https://doi.org/10.1007/s12666-014-0454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0454-z

Keywords

Navigation