Transactions of the Indian Institute of Metals

, Volume 67, Issue 6, pp 959–969 | Cite as

Electrochemical Performance of Anthocleista djalonensis on Steel-Reinforcement Corrosion in Concrete Immersed in Saline/Marine Simulating-Environment

  • Joshua Olusegun OkeniyiEmail author
  • Cleophas Akintoye Loto
  • Abimbola Patricia Idowu Popoola
Technical Paper


In this paper, electrochemical techniques were employed to study performance of different concentrations of Anthocleista djalonensis leaf-extract admixtures on the corrosion of steel-reinforcement in concrete immersed in 3.5 % NaCl, for simulating saline/marine environment. Analysed test-results showed that the corrosion rate correlated directly with admixture concentration and inversely with cube of the ratio of standard deviations of corrosion potential and corrosion current. The 0.4167 % A. djalonensis (per weight of cement) exhibited optimal inhibition efficiency, η = 97.43 ± 1.20 %, from analysed experimental data, or 94.80 ± 3.39 %, from predicted correlation model, on steel-reinforcement corrosion in the medium. The other admixture concentrations also exhibited high efficiencies at inhibiting steel-reinforcement corrosion in the chloride contaminated environment. Isotherm fittings of the experimental and predicted performance suggest that they both obeyed the Langmuir adsorption model. Evaluated parameters from the isotherm model indicated favourable adsorption and predominant chemisorption mechanism by this environmentally-friendly inhibitor of steel-reinforcement corrosion in the saline/marine simulating-environment.


Steel-rebar corrosion Saline/marine environment Green-inhibitor Electrochemical techniques Correlation analyses Inhibition efficiency 


  1. 1.
    Romano P, Brito P S D, and Rodrigues L, Constr Build Mater 47 (2013) 827.CrossRefGoogle Scholar
  2. 2.
    Singh D D N, and Venugopalan T, Trans Indian Inst Met 66 (2013) 677.CrossRefGoogle Scholar
  3. 3.
    Yohai L, Vázquez M, and Valcarce M B, Electrochim Acta 102 (2013) 88.CrossRefGoogle Scholar
  4. 4.
    Okeniyi J O, Omotosho O A, Ajayi O O, James O O, and Loto C A, Asian J Appl Sci 5 (2012) 132.CrossRefGoogle Scholar
  5. 5.
    Shi X, Xie N, Fortune K, and Gong J, Constr Build Mater 30 (2012) 125.CrossRefGoogle Scholar
  6. 6.
    Omotosho O A, Loto C A, Ajayi O O, and Okeniyi J O, Agric Eng Int 13 (2011) 1.Google Scholar
  7. 7.
    Zafeiropoulou T, Rakanta E, and Batis G, Prog Org Coat 72 (2011) 175.CrossRefGoogle Scholar
  8. 8.
    Song H -W, and Saraswathy V, Int J Electrochem Sci 2 (2007) 1.Google Scholar
  9. 9.
    Okeniyi J O, Omotosho O A, Ajayi O O, and Loto C A, Constr Build Mater 50 (2014) 448.CrossRefGoogle Scholar
  10. 10.
    Ernsting R A, Mazzuchi T A, Sarkani S, and Van Erp H R N, Struct Infrastruct Eng 8 (2012) 383.CrossRefGoogle Scholar
  11. 11.
    González J A, Cobo A, González M N, and Otero E, Mater Corros 51 (2000) 97.CrossRefGoogle Scholar
  12. 12.
    Feng L, Yang H, and Wang F, Electrochim Acta 58 (2011) 427.CrossRefGoogle Scholar
  13. 13.
    Fedrizzi L, Azzolini F, and Bonora P L, Cem Concr Res 35 (2005) 551.CrossRefGoogle Scholar
  14. 14.
    Okeniyi J O, Oladele I O, Ambrose I J, Okpala S O, Omoniyi O M, Loto C A, and Popoola A P I, J Cent South Univ 20 (2013) 3697.CrossRefGoogle Scholar
  15. 15.
    Królikowski A, and Kuziak J, Electrochim Acta 56 (2011) 7845.CrossRefGoogle Scholar
  16. 16.
    Shi J J, and Sun W, Cem Concr Compos 45 (2014) 166.CrossRefGoogle Scholar
  17. 17.
    Okeniyi J O, Ambrose I J, Oladele I O, Loto C A, and Popoola P A I, Int J Electrochem Sci 8 (2013) 10758.Google Scholar
  18. 18.
    Mennucci M M, Banczek E P, Rodrigues P R P, and Costa I, Cem Concr Compos 31 (2009) 418.CrossRefGoogle Scholar
  19. 19.
    Sharma M, Kumar A V R, and Singh N, Trans Indian Inst Met 61 (2008) 251.CrossRefGoogle Scholar
  20. 20.
    Akpan E J, Okokon J E, and Etuk I C, Asian Pac J Trop Dis 2 (2012) 36.CrossRefGoogle Scholar
  21. 21.
    Bassey A S, Okokon J E, Etim E I, Umoh F U, and Bassey E, Indian J Pharmacol 41 (2009) 258.CrossRefGoogle Scholar
  22. 22.
    Adeyemi O O, and Olubomehin O O, Pac J Sci Technol 11 (2010) 455.Google Scholar
  23. 23.
    Afia L, Salghi R, Zarrouk A, Zarrok H, Bazzi E H, Hammouti B, and Zougagh M, Trans Indian Inst Met 66 (2013) 43.CrossRefGoogle Scholar
  24. 24.
    Hameurlaine S, Gherraf N, Benmnine A, and Zellagui A, J Chem Pharm Res 2 (2010) 819.Google Scholar
  25. 25.
    Muralidharan S, Saraswathy V, Merlin Nima S P, and Palaniswamy N, Mater Chem Phy 86 (2004) 298.CrossRefGoogle Scholar
  26. 26.
    Okeniyi J O, Omoniyi O M, Okpala S O, Loto C A, and Popoola A P I, Euro J Environ Civ Eng 17 (2013) 398.CrossRefGoogle Scholar
  27. 27.
    ASTM G109-99a, Standard test method for determining the effects of chemical admixtures on the corrosion of embedded steel reinforcement in concrete exposed to chloride environments, ASTM International, West Conshohocken, PA.Google Scholar
  28. 28.
    Haynie F H, in Corrosion Tests and Standards: Application and Interpretation, Second Edition, (ed) Baboian R, ASTM International, West Conshohocken (2005), p 83.Google Scholar
  29. 29.
    Broomfield J P, Corrosion of Steel in Concrete: Understanding, Investigation and Repair, Taylor & Francis, New York (2003).Google Scholar
  30. 30.
    ASTM C876-91 R99, Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete, ASTM International, West Conshohocken, PA.Google Scholar
  31. 31.
    Eden D A, in Uhlig’s Corrosion Handbook 2nd Edition, (ed) Revie R W, Wiley, New York (2000), p 1227.Google Scholar
  32. 32.
    Sastri V S, Green Corrosion Inhibitors: Theory and Practice, Wiley, Hoboken, (2011).CrossRefGoogle Scholar
  33. 33.
    Nayak J, and Hebbar K R, Trans Indian Inst Met 61 (2008) 221.CrossRefGoogle Scholar
  34. 34.
    Abosrra L, Ashour A F, and Youseffi M, Constr Build Mater 25 (2011) 3915.CrossRefGoogle Scholar
  35. 35.
    ASTM G16-95 R04, Standard Guide for Applying Statistics to Analysis of Corrosion Data, ASTM International, West Conshohocken PA.Google Scholar
  36. 36.
    Izquierdo D, Alonso C, Andrade C, and Castellote M, Electrochim Acta 49 (2004) 2731.CrossRefGoogle Scholar
  37. 37.
    Okeniyi J O, Obiajulu U E, Ogunsanwo A O, Odiase N W, and Okeniyi E T, Mitig Adapt Strateg Glob Chang 18 (2013) 325.CrossRefGoogle Scholar
  38. 38.
    Roberge P R, in ASM Handbook, Vol 13A—Corrosion: Fundamentals, Testing, and Protection, (eds) Cramer S D, and Covino Jr B S, ASM International, Materials Park, (2003), p 425.Google Scholar
  39. 39.
    Ajayi O O, Fagbenle R O, Katende J, and Okeniyi J O, Front Energy 5 (2011) 376.Google Scholar
  40. 40.
    Ajayi O O, Fagbenle R O, Katende J, Okeniyi J O, and Omotosho O A, Int J Energy Clean Environ 11 (2010) 99.CrossRefGoogle Scholar
  41. 41.
    Reiss R –D, and Thomas M, Statistical Analysis of Extreme Values—3rd Edition, Birkhäuser Verlag AG, Basel, Switzerland (2007).Google Scholar
  42. 42.
    Kvam P, and Lu J -C, in Springer Handbook of Engineering Statistics, (ed) Pham H, Springer, London (2006), p 49.Google Scholar
  43. 43.
    Kotz S, and Nadarajah S, Extreme Value Distributions: Theory and Applications, Imperial College Press, London (2000).CrossRefGoogle Scholar
  44. 44.
    Lange K, Numerical Analysis for Statisticians 2nd Edition, Springer Science + Business Media, LLC, New York (2010).CrossRefGoogle Scholar
  45. 45.
    Waldemar D P, Numerical Methods, Algorithms, and Tools in C#, Taylor and Francis Group, LLC, Boca Raton (2010).Google Scholar
  46. 46.
    Hoffman J D, Numerical Methods for Engineers and Scientists, 2nd Edition, Marcel Dekker, Inc, New York (2001).Google Scholar
  47. 47.
    Okeniyi J O, and Okeniyi E T, J Stat Comput Simul 82 (2012) 1727.CrossRefGoogle Scholar
  48. 48.
    M.D. Weber, L.M. Leemis, and R.K. Kincaid, J Stat Comput Simul 76 (2006) 195.CrossRefGoogle Scholar
  49. 49.
    Kelly R G, Inman M E, and Hudson J L, in Electrochemical Noise Measurement for Corrosion Applications, ASTM STP 1277, (eds) Kearns J R, Scully J R, Roberge P R, Reichert D L, and Dawson J L, American Society for Testing and Materials (1996), p 101.Google Scholar
  50. 50.
    Tan Y -J, J Corros Sci Eng 1 (1999) 1.Google Scholar
  51. 51.
    Khomami M N, Danaee I, and Attar A A, and Peykari M, Trans Indian Inst Met 65 (2012) 303.CrossRefGoogle Scholar
  52. 52.
    Singh A K, Shukla S K, Quraishi M A, and Ebenso E E, J Taiwan Inst Chem Eng 43 (2012) 463.CrossRefGoogle Scholar
  53. 53.
    Bhat J I, and Alva V D P, Trans Indian Inst Met 64 (2011) 377.CrossRefGoogle Scholar
  54. 54.
    Foo K Y, and Hameed B H, Chem Eng J 156 (2010) 2.CrossRefGoogle Scholar
  55. 55.
    Söylev T A, and Richardson M G, Constr Build Mater 22 (2008) 609.CrossRefGoogle Scholar
  56. 56.
    Millard S G, Law D, Bungey J H, and Cairns J, NDT&E Int, 34 (2001) 409.CrossRefGoogle Scholar
  57. 57.
    Coffey R, Dorai-Raj S, O’Flaherty V, Cormican M, and Cummins E, Hum Ecol Risk Assess 19 (2013) 232.CrossRefGoogle Scholar
  58. 58.
    Satapathy A K, Gunasekaran G, Sahoo S C, Amit K, and Rodrigues P V, Corros Sci 51 (2009) 2848.CrossRefGoogle Scholar
  59. 59.
    Coates J, in Encyclopedia of Analytical Chemistry, (ed) Meyers R A, Wiley, Chichester (2000), p 10815.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2014

Authors and Affiliations

  • Joshua Olusegun Okeniyi
    • 1
    Email author
  • Cleophas Akintoye Loto
    • 1
    • 2
  • Abimbola Patricia Idowu Popoola
    • 2
  1. 1.Mechanical Engineering DepartmentCovenant UniversityOtaNigeria
  2. 2.Chemical, Metallurgical and Materials Engineering DepartmentTshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations