Skip to main content
Log in

On the Unavailability of Universal Glass Forming Ability Criterion

  • Overview
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present work examines different glass forming ability criteria (GFA), which distribute into four major categories based on different theories for glassy alloys. Four major categories are based on (i) characteristics transformation temperatures, (ii) Miedema approach, (iii) internal atomic configuration, and (iv) kinetic constraints (viscosity, diffusivity, etc.). Twelve alloys of widely different origin and nature (with respect to number of constituent elements, base element, critical casting thickness, etc.) have been selected for studying the applicability of different GFA criteria of different categories. The experimentally determined critical casting thickness (Zmax) of each alloy has been taken to be the measure of GFA. The best criterion of each category has been identified. Finally, it has been observed that no single criterion of any category alone shows satisfactory correlation with Zmax. However, two criteria of two different categories do not simultaneously fail. It has been concluded that to determine GFA of any random glass forming material, two different criteria of two different categories should be checked. If both results do not indicate similarity in them, GFA must be checked with third criteria of third category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Turnbull D, Contemp Phys 10 (1969) 473.

    Article  Google Scholar 

  2. Inoue A, Zhang T, and Mashumoto T, J Non Cryst Sol 156158 (1993) 473.

    Article  Google Scholar 

  3. Mondal K, and Murty B S, J Non Cryst Sol 351 (2005) 1366.

    Article  Google Scholar 

  4. Yuan Z Z, Bao S L, Lu Y, Zhang D P, and Yao L, J Alloy Compd 459 (2008) 251.

    Article  Google Scholar 

  5. Lu Z P, and Liu C T, Acta Mater 50 (2002) 3501.

    Article  Google Scholar 

  6. Chen Q J, Shen J, Fan H B, Sun J F, Huang Y J, and Mccartney D G, Chin Phys Lett 22 (2005) 1736.

    Article  Google Scholar 

  7. Fan G J, Choo H, and Liaw P K, J Non Cryst Sol 353 (2007) 102.

    Article  Google Scholar 

  8. Ji X, and Pan Y, Trans Nonferrous Met Soc China 19 (2009) 1271.

    Article  Google Scholar 

  9. Guo F Q, Poon S J, and Shiflet G J, Scripta Materialia 43 (2000) 1089.

    Article  Google Scholar 

  10. Miedema A R, Boom R, and De Boer F R, J Less Common Metals 41 (1975) 283.

    Article  Google Scholar 

  11. Miedema A R, and Niessen A K, Physica B 114 (1982) 367.

    Article  Google Scholar 

  12. Miedema A R, de Chatel P F, and de Boer F R, Physica B 100 (1980) 1.

    Article  Google Scholar 

  13. Xia L, Li W H, Fang S S, Wei B C, and Dong Y D, J Appl Phys 99 (2006) 1.

    Article  Google Scholar 

  14. Ji X, Pan Y, Ni F, Mater Des 30 (2009) 842.

    Article  Google Scholar 

  15. Monsoori G A, Carnhan N F, Starling K E, Lel and Jr T W, J Chem Phys 54 (1971) 1523.

    Google Scholar 

  16. Bhatt J, Jiang W, Junhai X, Qing W, Dong C, and Murty B S, Intermetallics 15 (2007) 716.

    Article  Google Scholar 

  17. Bhatt J, Dey G K, and Murty B S, Met Mat Trans A 39 (2008) 1543.

    Article  Google Scholar 

  18. Bhatt J, and Murty B S, J Alloy Compd 459 (2008) 135.

    Article  Google Scholar 

  19. Bhatt J, and Murty B S, Trans IIM 62 (2009) 413.

    Google Scholar 

  20. Bhatt J and Murty B S, Mater Sci Forum 649 (2010) 67.

    Article  Google Scholar 

  21. Weinberg M C, Uhlmann D R, and Zanotto E D, J Am Ceram Soc 72 (1989) 2054.

    Article  Google Scholar 

  22. Weinberg M C, Zelinski B J, and Uhlmann D R, J Non Cryst Sol 123 (1990):90.

    Article  Google Scholar 

  23. Chattopadhyay C, Sangal S, and Mondal K, Bull Mater Sci (2012) (accepted).

  24. Niessen A K, de Boer P R, Boom R, de Chiitel P F, Mattene W C M, and Miedema A R, CALPHAD 7 (1983) 51.

    Article  Google Scholar 

  25. Takeuchi A, and Inaoue A, Mater Trans (JIM) 42 (2001) 1435.

    Article  Google Scholar 

  26. Ray P K, Akinc M, and Kramer M J, J Alloy Compd 489 (2010) 357.

    Article  Google Scholar 

  27. Angell C A, Science 267 (1995) 1924.

    Article  Google Scholar 

  28. Mondal K, and Murty B S, Mater Sci Eng A 454–455 (2007) 654.

    Article  Google Scholar 

  29. Johnson W A, and Mehl R F, Trans Am Inst Min Metall Eng 135 (1939) 416.

    Google Scholar 

  30. Avrami M, J Chem Phys 7 (1939) 1103.

    Article  Google Scholar 

  31. Avrami M, J Chem Phys 8 (1940) 212.

    Article  Google Scholar 

  32. Avrami M, J Chem Phys 9 (1941) 177.

    Article  Google Scholar 

  33. Mondal K, and Murty B S, Mater Sci Eng A 454–455 (2007) 654.

    Article  Google Scholar 

  34. Turnbull D, J Appl Phys 31 (1950) 1022.

    Article  Google Scholar 

  35. Kholodenko A L, and Douglas J F, Phys Rev E 51 (1995) 1081.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mondal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, C., Sangal, S. & Mondal, K. On the Unavailability of Universal Glass Forming Ability Criterion. Trans Indian Inst Met 67, 451–458 (2014). https://doi.org/10.1007/s12666-013-0373-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-013-0373-4

Keywords

Navigation