Skip to main content
Log in

Corrosion Behavior of Sensitized 304 SS in Nitric Acid Medium Containing Oxidizing Ions

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The corrosion behavior of 304 stainless steel (SS) in the as-received and sensitized conditions has been investigated at room temperature and at 60 °C in the presence of oxidizing ions in 6 and 8 M nitric acid media. Corrosion of 304 SS in nitric acid was far more severe in sensitized condition than in as-received condition. Further, decrease in corrosion resistance was observed with increase in the temperature of nitric acid. The corrosion potential shifted to noble direction with increase in the concentration of nitric acid and the potential shifted further to transpassive potential at 60 °C. Increase in corrosion potential towards transpassive domain led to severe intergranualar attack. Impedance spectra showed two time constant which could be attributed to the redox reaction on the surface of oxide film. However, the effect of oxidizing metal ions was not prominent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fu Y, Wu X, Han E H, Ke W, Yang K and Jiang Z, Electrochem Acta 54 (2009) 1618.

    Article  Google Scholar 

  2. Garcia E G, Paniagua F A C, Hernandeza H H, Garcia J M J, Pardev M E P and Romo A A R, ECS Trans 29 (2010) 93.

    Article  Google Scholar 

  3. Kain V, Shinde S S and Gadiyar H S, J Mater Eng Perform 3 (1994) 699.

    Article  Google Scholar 

  4. Pujar M G, Parvathavarthini N, Dayal R K and Thirunavukkarasu S, Corros Sci 51 (2009) 1707.

    Article  Google Scholar 

  5. Yamamoto T, Tsukui S, Okamoto S, Nagai T, Takeuchi M, Takeda S and Tanaka Y, J Nucl Sci Technol 35 (1998) 353.

    Article  Google Scholar 

  6. Mayuzumi M, Ohta J and Arai T, Corrosion 54 (1998) 271.

    Article  Google Scholar 

  7. Pehkonen A, Aromaa J, Forse O and Virtanen J, Mater Sci Forum 289292 (1998) 213.

    Article  Google Scholar 

  8. Nickson I D, Boxall C, Jackson A and Whillock G O H, Mater Sci Eng 9 (2010) 1.

    Google Scholar 

  9. Baldev Raj, Kamachi Mudali U, Prog Nucl Energ 48 (2006) 283.

    Article  Google Scholar 

  10. Kamachi Mudali U, Dayal R K, Gnanamoorthy J B, J Nucl Mater 203 (1993) 73.

    Article  Google Scholar 

  11. Balbaud F, Sanchez G, Fauve Pt, Santarini G and Picard G, Corros Sci 42 (2000) 1685.

    Article  Google Scholar 

  12. Fauvet P, Balbaud F, Robin R, Tran Q T, Mugnier A, Espinoux D, J Nucl Mater 375 (2008) 52.

    Article  Google Scholar 

  13. Girija S, Raju V R, Kamachi Mudali U and Dayal R K, Corros Eng Sci Tech 38 (2003) 309.

    Article  Google Scholar 

  14. Smith W H and Purdy G M, Waste Mang 15 (1995) 477.

    Article  Google Scholar 

  15. Ningshen S, Kamachi Mudali U, Ramya S and Baldev Raj, Corros Sci 53 (2011) 64.

    Article  Google Scholar 

  16. Takeuchi M and Whillock G O H, J Nucl Sci Technol 41 (2004) 702.

    Article  Google Scholar 

  17. Armstrong R D, Cleland G E and Whillock G O H, J Appl Electrochem 28 (1998) 1205.

    Article  Google Scholar 

  18. Otero E, Pardo A, Saenz E, Utrilla M V and Hierro P, Corros Sci 38 (1996) 1485.

    Article  Google Scholar 

  19. Ningshen S, Kamachi Mudali U, Amarendra G and Baldev Raj, Corros Sci 51 (2009) 322.

    Article  Google Scholar 

  20. Padhy N, Ningshen S, Panigrahi B K and Kamachi Mudali U, Corros Sci 52 (2010) 104.

    Article  Google Scholar 

  21. Padhy N, Ningshen S, Kamachi Mudali U and Baldev Raj, Scripta Mater 62 (2010) 45.

    Article  Google Scholar 

  22. Sun H, Wu X and Han E H, Corros Sci 51 (2009) 2840.

    Article  Google Scholar 

  23. Petit M C, Desjardins D, Puggali M, Khelout A E and Clement C, Corros Sci 32 (1991) 1315.

    Article  Google Scholar 

  24. Girija S, Kamachi Mudali U, Khatak H S and Baldev Raj, Corros Sci 49 (2007) 4051.

    Article  Google Scholar 

  25. Kolman D G, Ford D K, Butt D P and T O Nelson, Corros Sci 39 (1997) 2067.

    Article  Google Scholar 

  26. Bague V, Chachoua S, Tran Q T and Fauvet P, J Nucl Mater 392 (2009) 396.

    Article  Google Scholar 

  27. Recommended Practices for Detecting Susceptibility to Intergranular Corrosion in Stainless Steels, Vol.3.02, ASTM Publications, Philadelphia (2002).

  28. Blanco G, Bautista A and Takenouti H, Cem Con Com 28 (2006) 212.

    Article  Google Scholar 

  29. Arutunow A and Darowicki K, Electrochim Acta 53 (2008) 4387.

    Article  Google Scholar 

  30. Drogowska M, Menard H and Lasia A, J App Electrochem 26 (1996) 1169.

    Google Scholar 

  31. Pardo A, Merino M C, Coy A E, Viejo F, Arrabal R and Matykina E, Corros Sci 50 (2008) 780.

    Article  Google Scholar 

  32. Macdonald J R in: Barsoukow Evgenij, Macdonald J R, Impedance Spectroscopy, Theory, Experiment and Applications, 2nd ed., John Wiley and Sons, Hoboken (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Kamachi Mudali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priya, R., Mallika, C. & Mudali, U.K. Corrosion Behavior of Sensitized 304 SS in Nitric Acid Medium Containing Oxidizing Ions. Trans Indian Inst Met 67, 459–467 (2014). https://doi.org/10.1007/s12666-013-0366-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-013-0366-3

Keywords

Navigation