Transactions of the Indian Institute of Metals

, Volume 67, Issue 1, pp 115–121 | Cite as

Corrosion Behavior of Ultra Fine Grain Copper Produced by Accumulative Roll Bonding Process

  • A. Nikfahm
  • I. Danaee
  • A. Ashrafi
  • M. R. Toroghinejad
Technical Paper

Abstract

In this study the effect of microstructure changes on the corrosion behavior of pure tough pitch copper in 3.5 % NaCl solution with pH = 5.5 at ambient temperature was studied. Accumulative roll bonding process as severe plastic deformation was applied up to 8 cycles to produce the ultrafine grain copper. For corrosion resistance investigations, the polarization and electrochemical impedance spectroscopy was used. Corrosion morphologies analyzed by FE-SEM microscopy after polarization and immersion tests. Results show the minimum corrosion resistance for cycle 2 and maximum corrosion resistance for cycle 8. Corrosion rate of copper decreased after it was rolled for forth time. The corrosion degradation in cycle 8 was uniform and it was intergranular for sample of cycle 2 and unrolled counterpart. The higher corrosion rate in cycle 2 was attributed to unstable microstructure and the uniform corrosion of cycle 8 was due to ultra fine grain formation.

Keywords

Corrosion Copper Ultrafine grain Accumulative roll bonding 

Notes

Acknowledgments

Appreciation is to Iranian nano technology initiative council and Tabriz Oil Refining Company for their financially supports of this work. Authors would also like to express their sincere gratitude to Eng. K. Irani for cooperation and coordination throughout this research.

References

  1. 1.
    Gleiter H, Nanostruct Mater 1 (1992) 1.CrossRefGoogle Scholar
  2. 2.
    Segal V M, Mater Sci Eng A 197 (1995) 157.CrossRefGoogle Scholar
  3. 3.
    Shaarbaf M and Toroghinejad M R, Mater Sci Eng. A 473 (2008) 28.CrossRefGoogle Scholar
  4. 4.
    Cherukuri B, Nedkova T S and Srinivasan R, Mater Sci Eng A 410411 (2005) 394.Google Scholar
  5. 5.
    Saito Y, Utsunomiya H, Tsuji N and Sakai T, Acta Mater 47 (1999) 579.CrossRefGoogle Scholar
  6. 6.
    Huang X, Tsuji N, Minamino Y and Hansen N, The 22nd Risø International Symposium on Materials Science, Roskild (2001).Google Scholar
  7. 7.
    Tsuji N, Saito Y, Lee S H and Minamino Y, Adv Eng Mater 5 (2003) 338.CrossRefGoogle Scholar
  8. 8.
    Tsuji N, Saito Y, Utsunomiya H and Tanigawa S, Scripta Mater 40 (1999) 795.CrossRefGoogle Scholar
  9. 9.
    Gordo P M, Duarte Naia M, Ramos A S, Vieira M T and Kajcsos Z, Positron studies on nanocrystalline copper thin films doped with nitrogen”, in: Proceedings ICPA15—15th International Conference on Positron Annihilation, Kolkata, India (2009).Google Scholar
  10. 10.
    Vinogradov A, Mimaki T, Hashimoto S and Valiev R Z, Scripta Mater 41 (1999) 319.CrossRefGoogle Scholar
  11. 11.
    Xu X X, Nie F L, Zhang J X, Zheng W, Zheng Y F, Hu C and Yang G, Mater Lett 64 (2010) 524.CrossRefGoogle Scholar
  12. 12.
    Yamasaki T, Miyamoto H, Mimaki T, Vinogradov A and Hashimoto S, Mater Sci Eng A 318 (2001) 122.CrossRefGoogle Scholar
  13. 13.
    Miyamoto H, Harada K, Mimaki T, Vinogradov A and Hashimoto A, Corros Sci 50 (2008) 1215.CrossRefGoogle Scholar
  14. 14.
    Janeceki M, Hadzima B, Hellma R J and Estrin Y, Kovove Mater 43 (2005) 258.Google Scholar
  15. 15.
    Danaee I, J Electroanal Chem 662 (2011) 415.CrossRefGoogle Scholar
  16. 16.
    Macdonald J R, Solid State Ion 13 (1984) 147.CrossRefGoogle Scholar
  17. 17.
    Jang Y H, Kim S S, Han S Z, Lim C Y, Kim C J and Goto M, Scripta Mater 52 (2005) 21.CrossRefGoogle Scholar
  18. 18.
    Han S Z, Lim C, Kim C J and Kim S, Mater Sci Forum 475479 (2005) 3497.CrossRefGoogle Scholar
  19. 19.
    Sherif E S M, Appl Surf Sci 252 (2006) 8615.CrossRefGoogle Scholar
  20. 20.
    Pourbaix M, Establishment and Interpretation of Potential: pH Equilibrium Diagrams, in Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers. Tex, Houston (1974).Google Scholar
  21. 21.
    Li W, Hu M, Zhang S and Hou B, Corros Sci 53 (2011) 735.CrossRefGoogle Scholar
  22. 22.
    Danaee I, Niknejad Khomami M and Attar A A, Mater Chem Phys 135 (2012) 658.CrossRefGoogle Scholar
  23. 23.
    Niknejad Khomami M, Danaee I, Attar A A and Peykari M, Trans Indian Inst Met 65 (2012) 303.CrossRefGoogle Scholar
  24. 24.
    Danaee I and Noori S, Int J Hydrogen Energy 36 (2011) 12102.CrossRefGoogle Scholar
  25. 25.
    Khaled K F, Mater Chem Phys 112 (2008) 104.CrossRefGoogle Scholar

Copyright information

© Indian Institute of Metals 2013

Authors and Affiliations

  • A. Nikfahm
    • 1
  • I. Danaee
    • 1
  • A. Ashrafi
    • 2
  • M. R. Toroghinejad
    • 3
  1. 1.Abadan Faculty of Petroleum EngineeringPetroleum University of TechnologyAbadanIran
  2. 2.Department of Materials Engineering, Faculty of EngineeringShahid Chamran UniversityAhvazIran
  3. 3.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations