Skip to main content
Log in

Modification of AZ91 Mg Alloys for High Temperature Applications

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The good specific strength and specific modulus of magnesium alloys had drawn the attention of the automotive manufacturers for use in fuel efficient vehicles. Among the cast magnesium alloys, AZ91 (Mg–9Al–1Zn) is the most sought alloy because of its good casting properties. However, this alloy loses its strength and creep resistance properties above 120 °C due to softening of the β phase (Mg17Al12). Hence, this alloy cannot be used for making heavier engine components (power train), which require the thermal stability up to about 250 °C. The paper discusses the approach of modifying the AZ91 alloy by minor alloying additions to improve the high temperature withstanding capability without significantly affecting its casting properties. Additions of Ca to AZ91 alloy to the levels of about 0.4 wt% increased the ambient and high temperature strength of the base alloy. Additions of other minor alloying elements such as Sb, Pb, rare earths etc. can also increase the high temperature capability of the AZ91 by further modifying the β phase structure. The paper overviews the work carried out by the authors on the role of different alloying additions on the microstructure and mechanical properties of AZ91 magnesium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hu H, Yu A, Li N, and Allison J E, Mater Manuf Process, 18 (2003) 687.

    Article  CAS  Google Scholar 

  2. Boby A, Pillai U T S, and Pai B C, Indian Foundry J 57 (2011), 29.

    CAS  Google Scholar 

  3. Han Q, Kad B K, and Viswanathan S, Philos Mag 84 (2004), 3843.

    Article  CAS  Google Scholar 

  4. Luo A A, Mater Sci Forum Trans Tech Switz 419422 (2003), 57.

    Article  Google Scholar 

  5. Kulekci M K, Int J Adv Manuf Technol 39 (2008), 851.

    Article  Google Scholar 

  6. Srinivasan A, Pillai U T S, and Pai B C, Mater Sci Eng A 527 (2010), 6543.

    Article  Google Scholar 

  7. Srinivasan A, Pillai U T S, and Pai B C, Metall Mater Trans 36A (2005) 2235e43.

    Google Scholar 

  8. Pekguleryuz M O, and Baril E, J Mater Trans JIM 42 (2001), 1258.

    Article  CAS  Google Scholar 

  9. Pettersen K, Lohne O, and Ryum N J, Metall Trans 21A (1999), 221.

    Google Scholar 

  10. Choi B H, You B S, Park W W, and Park I K M, Mater Sci Forum 475 (2005), 2477.

  11. Feng X, Xuegang M, and Yangshan S, J Mater Sci 41 (2006), 4725.

    Article  Google Scholar 

  12. Zhao Z, Chen Q, Wang Y, and Shu D, Mater Sci Eng A 515 (2009), 152.

    Article  Google Scholar 

  13. Vinotha D, Raghukandan K, Pillai U T S, and Pai B C, Trans Indian Inst Met 62 (2009), 521.

    Article  CAS  Google Scholar 

  14. Suresh M, Srinivasan A, Pillai U T S, and Pai B C, Mater Sci Eng A 528 (2011), 8573.

    Article  CAS  Google Scholar 

  15. Ding H, and Liu X, Mater Lett 63 (2009), 635.

    Article  CAS  Google Scholar 

  16. Werrwen D, Yangshan S, Xuegang M, Feng X, and Dengyun W, Trans Nonferr Met Soc China 13(6) (2003), 1274.

    Google Scholar 

  17. Balasubramani N, Suresh M, Srinivasan A, Pillai U T S, and Pai B C, Mater Sci 42 (2007), 8374.

    Article  CAS  Google Scholar 

  18. Khomamizadeh F, Nami B, and Khoshkhooei S, Metall Mater Trans A 36a (2005), 3489.

    Article  CAS  Google Scholar 

  19. Pekguleryuz M O, and Avedesian M M, in Proceedings of Magnesium Alloys and Their Applications, DGM, Oberursel (1992), p 213.

  20. Yu F, Guohua W, Hongtao G, Guanqun L, and Chunquan Z, J Mater Sci 41 (2006), 5409e16.

    Google Scholar 

  21. Shengfa L, Liugen K, Hui H, and Zhongfan W, J Wuhan Univ Technol Mater Sci Ed 21(4) (2006), 45.

    Google Scholar 

  22. Li S-S, Tang B, and Zeng D-B, J Alloys Compd 437 (2007), 317.

    Article  CAS  Google Scholar 

  23. Yuan G, Sun Y, and Ding W, Mater Sci Eng A 308 (2001) 38e44.

    Google Scholar 

  24. Srinivasan A, Influence of Si, Sb and Sr Additions on the Microstructure, Mechanical Properties and Corrosion Behavior of AZ91 Magnesium Alloy, PhD Thesis, Cochin University of Science and Technology (2008).

  25. Srinivasan A, Pillai U T S, Swaminathan J, Das S K, and Pai B C, J Mater Sci 41 (2006), 6087Z.

    Article  Google Scholar 

  26. Wang S-R, Guo P-Q, Yang L-Y, and Wang Y, JMEPEG 18 (2009), 137, ASM International, doi:10.1007/s11665-008-9255.

  27. Socjusz-Podosek M, and Litynska L, Mater Chem Phys 80 (2003), 472.

    Article  CAS  Google Scholar 

  28. Wang J, Wang L, An J, and Liu Y, J Mater Eng Perform 17 (2008), 725.

    Article  CAS  Google Scholar 

  29. Srinivasan A, Pillai U T S, and Pai B C, Mater Sci Eng A 452453 (2007), 87.

    Google Scholar 

Download references

Acknowledgments

The author’s wishes to acknowledge the support given by the Director, NIIST-CSIR, help of Mr. Arun Bobby during the preparation of the manuscript, members of LMAC group for their help and support of CSIR-HRDG for the ES grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Pai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pai, B.C., Pillai, U.T.S., Manikandan, P. et al. Modification of AZ91 Mg Alloys for High Temperature Applications. Trans Indian Inst Met 65, 601–606 (2012). https://doi.org/10.1007/s12666-012-0166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-012-0166-1

Keywords

Navigation