Fabrication and Testing of Slurry Pot Erosion Tester

  • Aniruddha A. Gadhikar
  • Ashok Sharma
  • D. B. Goel
  • C. P. Sharma
Technical Paper


Slurry pot erosion tester is a simple and inexpensive test rig which can provide a rapid ranking of the erosion resistance for different materials. The fabrication of modified slurry pot erosion tester has been reported here. The present slurry pot erosion tester facilitates to handle large cylindrical and flat samples. It also allows using slurry with variety in its volume, and concentration and particle size of sand. The much needed uniform distribution of solid particles along the vertical section of the slurry is controlled by the speed of the stirrer. In the present investigation, the effect of stirrer speed on the distribution of sand particles inside the slurry pot is studied for variety of slurry. The optimum stirrer speed for uniform distribution of 300 μ sand particles over the vertical cross section in slurry of 10% concentration and 20 l volume comes out to be 850 rpm. The erosion behaviour of mild steel was also studied to ensure suitability of the device for determination of erosive wear.


Erosion test rig Slurry pot tester Stirrer speed Solid distribution 


  1. 1.
    Iain F, Wear 3 (1960) 87.CrossRefGoogle Scholar
  2. 2.
    Neilson J H, and Gilchrist A, Wear 11 (1968) 111.CrossRefGoogle Scholar
  3. 3.
    Nagarajana R, Ambedkar B, Gowrisankar S, and Somasundaram S, Wear 267 (2009) 122.CrossRefGoogle Scholar
  4. 4.
    Shivamurthy R C, Kamaraj M, Nagarajan R, Shariff S M, and Padmanabham G, Wear 267 (2009) 204.CrossRefGoogle Scholar
  5. 5.
    Kosel T H, Metals Handbook, 10th edn, vol. 18, ASM, Materials Park (1992), p 199.Google Scholar
  6. 6.
    Desale G R, Gandhi B K, and Jain S C, Wear 259 (2005) 196.CrossRefGoogle Scholar
  7. 7.
    Clark H M, in Test Methods and Applications for Slurry Erosion—A Review, Tribology: Wear Test Selection for Design and Application, ASTM STP 1199, (eds) Ruff A W, and Bayer R G, American Society for Testing and Materials, Philadelphia, PA (1993) p 113.Google Scholar
  8. 8.
    Gupta R, Singh S N, and Seshadri V, Wear 184 (1995) 169.CrossRefGoogle Scholar
  9. 9.
    Sheldon G L, and Kanhere A, Wear 21 (1972) 195.CrossRefGoogle Scholar
  10. 10.
    Tsai W, Humphrey J A C, Cornet I, and Levy A V, Wear 68 (1981) 289.CrossRefGoogle Scholar
  11. 11.
    Chattopadhyay R, Wear 162–164 (1993) 1040.CrossRefGoogle Scholar
  12. 12.
    de Bree S E M, Rosenbrand W F, and de Gee A W J, in Eighth International Conference on the Hydraulic Transport of Solids in Pipes, Johannesburg, South Africa, BHRA, Great Britain (1982) p 161.Google Scholar
  13. 13.
    Elkholy A, Wear 84 (1983) 39.CrossRefGoogle Scholar
  14. 14.
    Tuzson J J, J Fluids Eng 106 (1984) 135.CrossRefGoogle Scholar
  15. 15.
    Madsen B W, Wear of Materials, American Society of Mechanical Engineers, New York (1985), p 345.Google Scholar
  16. 16.
    Roco M C, Nair P, and Addie G R, in Slurry Erosion: Uses. Applications and Test Methods, ASTM STP 940 (eds) Miller J E, and Schmidt F E Jr, American Society for Testing and Materials, Philadelphia, PA (1987), p 185.Google Scholar
  17. 17.
    Wood R J K, and Wheeler D W, Wear 220 (1998) 95.CrossRefGoogle Scholar
  18. 18.
    Neville A, and Wang C, Wear 267 (2009) 2018.CrossRefGoogle Scholar
  19. 19.
    Tilly G P, and Sage W, Wear 16 (1970) 447.CrossRefGoogle Scholar
  20. 20.
    Al-Bukhaiti M A, Ahmed S M, Badran F M F, and Emara K M, Wear 262 (2007) 1187.CrossRefGoogle Scholar
  21. 21.
    Lathabai S, and Pender D C, Wear 189 (1995) 122.CrossRefGoogle Scholar
  22. 22.
    Clark H M, Tribol Int 35 (2002) 617.CrossRefGoogle Scholar
  23. 23.
    Lin F Y, and Shao H S, Wear 141 (1991) 279.CrossRefGoogle Scholar
  24. 24.
    Lin F Y, and Shao H S, Wear 143 (1991) 231.CrossRefGoogle Scholar
  25. 25.
    Turenne S, Fiset M, and Masounave J, Wear 133 (1989) 95.CrossRefGoogle Scholar
  26. 26.
    Oka Y I, Nishimura N, Nagahashi K, and Matsumura M, Wear 250 (2001) 736.CrossRefGoogle Scholar
  27. 27.
    Chevallier P, Vannes A B, and Forner A, Wear 186187 (1995) 210.CrossRefGoogle Scholar
  28. 28.
    Abouel-Kasem A, Abd-elrhman Y M, Emara K M, and Ahmed S M, J Tribol 132 (2010) 1CrossRefGoogle Scholar
  29. 29.
    Clark H McI, Tuzson J, and Wong K K, Wear 241 (2000) 1.CrossRefGoogle Scholar
  30. 30.
    Hawthorne H M, Xie Y, and Yick S K, Wear 255 (2003) 170.CrossRefGoogle Scholar
  31. 31.
    Dube N M, Dube A, Veeregowda D H, Iyer S B, Wear 267 (2009) 259.CrossRefGoogle Scholar
  32. 32.
    Sharma R N, and Shaikh A A, Chem Eng Sci 58 (2003) 2123.CrossRefGoogle Scholar
  33. 33.
    Biswas P K, Dev S C, Godiwalla K M, and Sivaramakrishnan C S, Mater Des 20 (1999) 253.CrossRefGoogle Scholar
  34. 34.
    Zu J B, Hutchings I M, and Burstein G T, Wear 140 (1990) 331.CrossRefGoogle Scholar
  35. 35.
    Gandhi B K, Singh S N, and Seshadri V, Wear 254 (2003) 1233.CrossRefGoogle Scholar
  36. 36.
    Desale G R, Gandhi B K, and Jain S C, Wear 264 (2008) 322.CrossRefGoogle Scholar
  37. 37.
    Zitoun K B, Sastry S K, Guezennec Y, Int J Multiph Flow 27 (2001) 1397.CrossRefGoogle Scholar
  38. 38.
    Clark H M, and Hartwich R B, Wear 248 (2001) 147.CrossRefGoogle Scholar
  39. 39.
    Levy A V, Wear 108 (1986) 1.CrossRefGoogle Scholar
  40. 40.
    Levy A V, and Hickey G, Wear 117 (1987) 129.CrossRefGoogle Scholar
  41. 41.
    Harsha A P, and Bhaskar D K, Mater Des 29 (2008) 1745.CrossRefGoogle Scholar

Copyright information

© Indian Institute of Metals 2011

Authors and Affiliations

  • Aniruddha A. Gadhikar
    • 1
  • Ashok Sharma
    • 1
  • D. B. Goel
    • 2
  • C. P. Sharma
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringMalaviya National Institute of TechnologyJaipurIndia
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of TechnologyRoorkeeIndia

Personalised recommendations