Skip to main content
Log in

Wear of Plasma Sprayed Conventional and Nanostructured Al2O3 and Cr2O3, Based Coatings

  • Review paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

An ever increasing demand for high-performance ceramic coatings has made it inevitable for developing techniques with precise control over the process parameters to enable the fabrication of coatings with the desired microstructure and improved structural properties. The literature on plasma sprayed nanostructured ceramic coatings such as of Al2O3, Cr2O3, and their composites obtained using reconstituted nano sized ceramic powders has been reviewed in this study. Ceramic coatings due to their enhanced properties are on the verge of replacing conventional ceramic coatings used for various applications like automotive systems, boiler components, power generation equipment, chemical process equipment, aircraft engines, pulp and paper processing equipment, land-based and marine engine components, turbine blades etc. In such cases, the advantage is greater longevity and reliability for realizing the improved performance of ceramic coatings. It has been observed that the plasma sprayed nanostructured ceramic coatings show improvement in resistance to wear, erosion, corrosion, and mechanical properties as compared to their conventional counterparts. This article reviews various aspects concerning the plasma sprayed ceramic coatings such as (i) the present understanding of formation of plasma-spray coatings and factors affecting them, (ii) wear performance of nanostructured Al2O3, Cr2O3 and their composite ceramic coatings in comparison to their conventional counterparts, and (iii) mechanisms of wear observed for these coatings under various conditions of testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Holmberg K, and Matthews A, Coatings Tribology: Properties, Techniques and Applications in Surface Engineering, Elsevier, Amsterdam (1994).

    Google Scholar 

  2. Sun Y, Li B, Yang D, Wang T, Sasaki Y, and Ishii K, Wear 215 (1998) 232.

    Article  CAS  Google Scholar 

  3. Vourlias G, Pistofidis N, Psyllaki P, Pavlidou E, Stergioudis G, and Chrissafis K, J Alloy Comp 483 (2009) 378.

    Article  CAS  Google Scholar 

  4. Carter C B, and Norton M G, Ceramic Materials/Science and Engineering, Springer, New York (2007).

    Google Scholar 

  5. Vaxevanidis N M, Manolakos D E, and Petropoulos G P, Tribol Ind 26 (2004) 42.

    Google Scholar 

  6. Bandyopadhyay P P, Das S, Madhusudan S, and Chattopadhyay A B, Mater Sci Lett J 18 (1999) 727.

    Article  CAS  Google Scholar 

  7. Davis J R, Handbook of Thermal Spray Technology, ASM International, Materials Park (2004) p 3.

    Google Scholar 

  8. Dolatabadi A, Pershin V, and Mostaghimi, J Therm Spray Tech J 14 (2005) 91.

    Article  CAS  Google Scholar 

  9. Ruckle D L, Thin Solid Films 73 (1980) 455.

    Article  CAS  Google Scholar 

  10. Gérard B, Surf Coat Technol 201 (2006) 2028.

    Article  Google Scholar 

  11. Lima R S, and Marple B R, Therm Spray Technol J 16 (2007) 40.

    Article  CAS  Google Scholar 

  12. Darut G, Ben-Ettouil F, Denoirjean A, Montavon G, Ageorges H, and Fauchais P, Therm Spray Technol J 19 (2010) 275.

    Article  CAS  Google Scholar 

  13. Darut G, Ageorges H, Denoirjean A, Montavon G, and Fauchais P, Therm Spray Technol J 17 (2008) 788.

    Article  CAS  Google Scholar 

  14. Chawla V, Sidhu B S, Puri D, and Prakash S, Mater Forum 32 (2008) 137.

    CAS  Google Scholar 

  15. Singh H, Grewal M S, Sekhon H S, and Rao R G, Part J: J Eng Tribol 222 (2008) 601–610.

    Google Scholar 

  16. Zhen-nan Z, Li U, Xi-meng L, and Guang L, Mat Prot 2010,CNKI:SUN:CLBH.

  17. Knight R, Thermal Spray: Thermal Spray Term Paper–MATE-580, Drexel University, Philadelphia (2003), p 1.

  18. Fauchais P, Therm Spray Technol J 4 (1995) 3.

    Article  Google Scholar 

  19. Alex M, Balagi V, Prasad K R, Sreekumar K P, and Ananthapadmanabhan P V, Pramana J Phy 55 (2000) 927.

    Article  CAS  Google Scholar 

  20. Lugscheider E, and, Weber T, IEEE Trans Plasma Sci 18 (1990) 968.

    Article  CAS  Google Scholar 

  21. http://www.tosohset.com/ceramicoat.htm.

  22. Fauchais P, Phys D Appl Phys J 37 (2004) 86.

    Article  Google Scholar 

  23. He J, and Schoenung J M, Mater Sci Eng A336 (2002) 274.

    CAS  Google Scholar 

  24. Zhou H, and Li F, Coat Technol Res J 6 (2009) 383.

    Article  CAS  Google Scholar 

  25. Suryanarayana C, Non-equilibrium Processing of Materials, Pergamon, Oxford (1999).

  26. Vicent M, Sánchez E, Santacruz I, and Moreno R, Euro Ceram Soc J 31 (2011) 1413.

    Article  CAS  Google Scholar 

  27. Goeckner M, Ogawa D, Saraf I, and Overzet L, Phys Conf Ser J 162 (2009) 1621.

    Google Scholar 

  28. Toma F L, Berger L M, Naumann T, and Langner S, Surf Coat Technol 202 (2008) 4343.

    Article  CAS  Google Scholar 

  29. Brinley E, Babu K S, and Seal S, JOM 59 (2007) 54.

  30. Pawlowski L, Surf Coat Technol 202 (2008) 4318.

    Article  CAS  Google Scholar 

  31. Bertrand G, Roy P, Filiatre C, and Coddet C, Chem Eng Sci 60 (2005) 95.

    Article  CAS  Google Scholar 

  32. Fauchais P, Montavon G, and Bertrand G, Therm Spray Technol J 19 (2010) 56.

    Article  CAS  Google Scholar 

  33. Shipway P H, McCartney D G, and Sudaprasert T, Wear 259 (2005) 820.

    Article  CAS  Google Scholar 

  34. Ouyang J H, and Sasaki S, Wear 249 (2001) 56.

    Article  CAS  Google Scholar 

  35. Marcinauskas L, and Valatkevicius P, Mater Sci 28 (2010) 451.

    CAS  Google Scholar 

  36. Yusoff N H N, Ghazali M J, and Muchtar A, Proceedings of Regional Engineering Post Graduate Conference, Malaysia (2009).

  37. Gell M, Jordan E H, Sohn Y h, Goberman D, Shaw L, and Xiao T D, Surf Coat Technol 146 (2001) 48.

    Article  Google Scholar 

  38. Seal S, Kuiry S C, Georgieva P, and Agarwal A, MRS Bull 29 (2004) 16.

  39. http://www.azom.com/details.asp?ArticleID=3560.

  40. Chen H, Zhang Y, and Ding C, Wear 251 (2002) 885.

    Article  Google Scholar 

  41. Tarasi F, Medraj M, Dolatabadi A, Oberste-Berghaus J, and Moreau C, Therm Spray Techol J 17 (2008) 685.

    Article  CAS  Google Scholar 

  42. Yin Z J, Tao S Y, Zhou X M and Ding C X, Proceedings of 10th International Conference on Intelligent Transport System, Seattle, (2007).

  43. Westergård R, Erickson L C, Axe N, Hawthorne H M, and Hogmark S, Tribol Int 31 (1998) 271.

    Article  Google Scholar 

  44. Morks M F, and Akimoto K, Manu Proc J 10 (2008) 1.

    Article  Google Scholar 

  45. An L, Gao Y, and Zhang T, J Therm Spray Technol 16 (2007) 967–973.

  46. Zhang W, Zheng L L, Zhang H, and Sampath S, Plasma Chem Plasma Proc 27 (2007) 701.

    Article  CAS  Google Scholar 

  47. Sabiruddin K, Bandyopadhyay P P, Bolelli G, and Lusvarghi L, Mater Process Technol J 211 (2011) 450.

    Article  CAS  Google Scholar 

  48. Branco J R T, Gansert R, Sampath S, Berndt C C, and Herman H, Mater Res 7 (2004) 147.

    Article  CAS  Google Scholar 

  49. Krishnamurthy N, Murali M S, Mukunda P G, and Ramesh M R, Mater Sci J 45 (2010) 850.

    Article  CAS  Google Scholar 

  50. Liang B, Zhang G, Liao H, Coddet C, and Ding C, Surf Coat Technol 203 (2009) 3235.

    Article  CAS  Google Scholar 

  51. Li J F, Huang J Q, Zhang Y F, Ding C X, and Zhang P Y, Wear 214 (1998) 202.

    Article  CAS  Google Scholar 

  52. Li J, Zhang Y, Huang J, and Ding C, Therm Spray Technol J 7 (1998) 242.

    Article  CAS  Google Scholar 

  53. Brinkienė K, Kėželis R, Čėsnienė J, Mėčius V, and Žunda A, Mater Sci 14 (2008) 345.

    Google Scholar 

  54. Jianjun W, Qunji X, and Hanqing W, Wear 152 (1992) 161.

    Article  Google Scholar 

  55. Ahn H S, and Kwon O K, Wear 225 (1999) 814.

    Article  Google Scholar 

  56. Liu G H, Robbevalloire F, Gras R, and Blouet J, Wear 160 (1993) 181.

    Article  CAS  Google Scholar 

  57. Berger L M, Stahr C C, Saaro S, Thiele S, Woydt M, and Kelling N, Wear 267 (2009) 954.

    Article  CAS  Google Scholar 

  58. Krishnamurthy N, Murali M S, and Mukunda P G, High Temp Mater Process 29 (2011) 111.

    Google Scholar 

  59. Bolvardi H, Khorsand H, Movahed P, and Etaati A, Defect Diffus Forum J 297 (2010) 1122.

    Article  Google Scholar 

  60. Drozdov Y N, Nadein V A, and Savinova T M, Russ Eng Res 28 (2008) 554.

    Article  Google Scholar 

  61. Hsu S M, and Shen M C, Wear 200 (1996) 154.

    Article  CAS  Google Scholar 

  62. Hsu S M, and Shen M C, Wear 256 (2004) 867.

    Article  CAS  Google Scholar 

  63. Hawthorne H M, Erickson L C, Ross D, Tai H, and Troczynski T, Wear 203 (1997) 709.

    Article  Google Scholar 

  64. Fernandez J E, Wang Y, Tucho R, Martin-Luengo M A, Gancedo R, and Rincont A, Tribol Int 29 (1996) 333.

    Article  CAS  Google Scholar 

  65. Tao S,Yin Z, Zhou X, and Ding C, Tribol Int 43 (2010) 69.

    Article  CAS  Google Scholar 

  66. Ouyang J H, and Sasaki S, Tribol Int 38 (2005) 49.

    Article  CAS  Google Scholar 

  67. Helle A, Andersson P, Ahlroos T, and Kupiainen V, Research Report No. BTUO43- 041265, VTT Technical Research Centre, Finland (2004) p 28.

  68. Lathabai S, Ottmuller M, and Fernandez I, Wear 221 (1998) 93.

    Article  CAS  Google Scholar 

  69. Singh V P, Sil A, and Jayaganthan R, Mater Des 32 (2011) 584.

    Article  CAS  Google Scholar 

  70. Shaw L L, Goberman D, Ren R, Gell M, Jiang S, Wang Y, Danny Xiao T, and Strutt P R, Surf Coat Technol 130 (2000) 1.

    Article  CAS  Google Scholar 

  71. Song E P, Ahn J, Lee S, and Kim N, J Surf Coat Technol 201 (2006) 1309.

    Article  CAS  Google Scholar 

  72. Yugeswaran S, Selvarajan V, Vijay M, Ananthapadmanabhan P V, and Sreekumar K P, Ceram Int 36 (2010) 141.

    Article  CAS  Google Scholar 

  73. Marcinauskas L, Mater Sci (Medziagotyra) 16 (2010) 47.

    Google Scholar 

  74. Goberman D, Sohn Y H, Shaw L, Jordan E, and Gell M, Acta Mater 50 (2002) 1141.

  75. Kassner H, Siegert R, Hathiramani D, Vassen R, and Stoever D, Therm Spray Technol J 17 (2008) 115.

    Article  CAS  Google Scholar 

  76. Chen Z, and Trice R W, Mater Sci J 39 (2004) 4171.

    Article  CAS  Google Scholar 

  77. Cao X Q, Vassen R, Schwartz S, Jungen W, Tietz F, and Stoever D, Euro Ceram Soc J 20 (2000) 2433.

    Article  CAS  Google Scholar 

  78. Tian W, Wang Y, Zhang T, and Yang Y, Mater Chem Phys 118 (2009) 37.

    Article  CAS  Google Scholar 

  79. Tian W, Wang Y, and Yang Y, Tribol Int 43 (2010) 876.

    Article  CAS  Google Scholar 

  80. Lin X, Zeng Y, Zhou X, and Ding C, Mater Sci Eng A357 (2003) 228.

    CAS  Google Scholar 

  81. Dongsheng W, Zongjun T, Lida S, Zhidong L, and Yinhui H, Rare Met 28 (2009) 465.

    Article  Google Scholar 

  82. Chuanxian D, Zatorski R A, and Herman H, Thin Solid Films 118 (1984) 467.

    Article  Google Scholar 

  83. Kabacoff L T, AMPTIAC Newslett 6 (2002) 37.

    CAS  Google Scholar 

  84. Zhang J, He J, Dong Y, Li X, and Yan D, Mater Process Technol J 197 (2008) 31.

    Article  CAS  Google Scholar 

  85. Dejang N, Watcharapasorn A, Wirojupatump S, Niranatlumpong P, and Jiansirisomboon S, Surf Coat Technol 204 (2010) 1651.

    Article  CAS  Google Scholar 

  86. Tian W, Wang Y, and Yang Y, Wear 265 (2008) 1700.

    Article  CAS  Google Scholar 

  87. Sanchez E, Bannier E, Cantavella V, Salvador M D, Klyatskina E, Morgiel J, Grzonka J, and Boccaccini A R, Therm Spray Technol J 17 (2008) 329.

    Article  CAS  Google Scholar 

  88. Zhao X, An Y, Chen J, Zhou H, and Yin B, Wear 265 (2008) 1642.

    Article  CAS  Google Scholar 

  89. Lin X, Zeng Y, Ding C, and Zhang P, Tribol Lett 17 (2004) 19.

    Article  CAS  Google Scholar 

  90. Rico A, Garrido M A, Otero E, and Rodriguez J, Acta Mater J 58 (2010) 5858.

    Article  CAS  Google Scholar 

  91. Cavaleiro A, and De Hosson J T M, Nanostructured Coatings, New York (2006) p 4.

  92. Zhang B, and Cheng X M, Nanotechnol Precis Eng 8 (2010) 475.

    CAS  Google Scholar 

  93. Wang Y, Jiang S, Wang M, Wang S, Danny Xiao T, and Strutt P R, Wear 237 (2000) 176.

    Article  CAS  Google Scholar 

  94. Gant A J, and Gee M G, Phys D Appl Phys J 44 (2011) 15.

    Google Scholar 

  95. Ibrahim A, Hamid Z A, and Aal A A, Mater Sci Eng A 527 (2010) 663.

    Article  Google Scholar 

  96. Rico A, Rodriguez J, Otero E, Zeng P, and Rainforth W M, Wear 267 (2009) 1191.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayaganthan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, V.P., Sil, A. & Jayaganthan, R. Wear of Plasma Sprayed Conventional and Nanostructured Al2O3 and Cr2O3, Based Coatings. Trans Indian Inst Met 65, 1–12 (2012). https://doi.org/10.1007/s12666-011-0070-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-011-0070-0

Keywords

Navigation