Skip to main content
Log in

Effect of Welding Parameters on Tensile Properties and Fatigue Behavior of Friction Stir Welded 2014-T6 Aluminum Alloy

  • Original Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present work describes the effect of welding parameters on the tensile properties and fatigue behaviour of 2014-T6 aluminum alloy joints produced by friction stir welding (FSW). Characterization of the samples has been carried out by means of microstructure, microhardness, tensile properties and fatigue behaviors. The hardness in the softened weld region decreases with decreasing the welding speed. Irrespective of the tool rotation speeds, the best tensile and fatigue properties were obtained in the joints with the welding speed of 80 mm/min. The joint welded with a rotating speed of 1520 rpm at 80 mm/min has given a highest tensile and fatigue properties. The fatigue behaviors of the joints are almost consistent with the tensile properties, especially elongations. Higher ductility in FSW joints made the material less sensitive to fatigue. The location of tensile fractures of the joints is dependent on the welding parameters. On the other hand, the fatigue fracture locations change depending on the welding parameters and stress range. In addition, a considerable correlation could not be established in between heat indexes and mechanical properties of FSW 2014-T6 joints under the investigated welding parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Thomas W M, Nicholas E D, Needham J C, Church M G, Temple-Smith P, and Dawes C J, GB Patent Application, No. 9125978-9 (1991).

  2. Mishra R S, Ma Z Y, and Charit I, Mater Sci Eng A 341 (2003) 307.

    Google Scholar 

  3. Zhao Y h, Lin S b, Wu L, and Qu F x, Mater Lett 59 (2005) 2948.

    Article  CAS  Google Scholar 

  4. Ren S R, Ma Z Y, and Chen L Q, Scr Mater 56 (2007) 69.

    Article  CAS  Google Scholar 

  5. Rajamanickam N, and Balusamy V, Indian J Eng Mater Sci 15 (2008) 293.

    CAS  Google Scholar 

  6. Vural M, Ogur A, Cam G, and Ozarpa C, Arch Mater Sci Eng 28 (2007) 49.

    Google Scholar 

  7. Lockwood W D, Tomaz B, and Reynolds A P, Mater Sci Eng A 323 (2002) 348.

    Article  Google Scholar 

  8. Dawes C J, in Friction Stir Welding, in Training in Aluminium, Application Technologies-TALAT, European Aluminum Association, in CD-ROM Lectures 4410 (1990).

  9. Babu G R, Murti K G K, and Janardhana G R, ARPN J Eng Appl Sci 3 (2008) 68.

    Google Scholar 

  10. Ericsson M, and Sandström R, Int J Fatigue 25 (2003) 1379.

    Article  CAS  Google Scholar 

  11. Dickerson T, Shi Q, and Shercliff H R, in 4th Int. Symposium on Friction Stir Welding Heat Flow into Friction Stir Welding Tools,, Park City, UT, USA (2003).

  12. Jata K V, and Semiatin S L, Scr Mater 43 (2000) 743.

    Article  CAS  Google Scholar 

  13. Salem H G, Reynolds A P, and Lyons J S, Scr Mater 46 (2002) 337.

    Article  CAS  Google Scholar 

  14. Aydin H, Bayram A, Uğuz A, and Akay S K, Mater Des 30 (2009) 2211.

    Article  CAS  Google Scholar 

  15. Uematsu Y, Tokaji K, Shibata H, Tozaki Y, and Ohmune T, Int J Fatigue 31 (2009) 1443.

    Article  CAS  Google Scholar 

  16. Aydin H, Bayram A, Yıldırım M T, and Yiğit K, Mater Sci Medziagotyra 16 (2010) 311.

    Google Scholar 

  17. Zhou C, Yang X, and Luan G, Scr Mater 53 (2005) 1187.

    Article  CAS  Google Scholar 

  18. Lomolino S, Tovo R, and dos Santos J, Int J Fatigue 27 (2005) 305.

    Article  CAS  Google Scholar 

  19. Dickerson T L, and Przydatek J, Int J Fatigue 25 (2003) 1399.

    Article  CAS  Google Scholar 

  20. Di S, Yang X, Luan G, and Jian B, Mater Sci Eng A 435–436 (2006) 389.

    Google Scholar 

  21. Turkish Standard, TS 138 EN 10002-1, Metallic Materials—Tensile Testing—Part 1: Method of Test at Ambient Temperature, Turkey (2004).

  22. Salem H G, Scr Mater 49 (2003) 1103.

    Article  CAS  Google Scholar 

  23. Aydin H, Bayram A, and Durgun I, Mater Des 31 (2010) 2568.

    Article  CAS  Google Scholar 

  24. Mahoney M W, Rhodes C G, Flintoff J G, Bingel W H, and Spurling R A, Metall Mater Trans A 29 (1998) 1955.

    Article  Google Scholar 

  25. Mishra R S, and Ma Z Y, Mater Sci Eng R 50 (2005) 1.

    Article  Google Scholar 

  26. Sato Y S, Kokawa H, Enomote M, and Jogan S, Metall Mater Trans A 30A (1999) 2429.

    Article  CAS  Google Scholar 

  27. Benavides S, Li Y, Murr L E, Brown D, and McClure J C, Scr Mater 41 (1999) 809.

    Article  CAS  Google Scholar 

  28. Jata K V, Sankaran K K, and Ruschau J, Metall Mater Trans A 31 (2000) 2181.

    Article  Google Scholar 

  29. Denquin A, Allehaux D, Campagnac M–H, and Lapasset G, in Proceedings of The Third International Symposium on Friction Stir Welding, Microstructural Evolution and Strength Mismatch Within a Friction Stir Welded 6056 Aluminium Alloy, Kobe, Japan (2001).

  30. Cavalierea P, Squillace A, and Panella F, J Mater Process Technol 180 (2008) 364.

    Article  Google Scholar 

  31. Cavaliere P, and Panella F, J Mater Process Technol 206 (2008) 249.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Aydin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aydin, H., Tutar, M., Durmuş, A. et al. Effect of Welding Parameters on Tensile Properties and Fatigue Behavior of Friction Stir Welded 2014-T6 Aluminum Alloy. Trans Indian Inst Met 65, 21–30 (2012). https://doi.org/10.1007/s12666-011-0069-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-011-0069-6

Keywords

Navigation