Skip to main content
Log in

Room-temperature positive magnetoresistance in (Fe0.64Cu0.06Co0.3)-graphite granular nanocomposites

  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

(Fe0.64Cu0.06Co0.3)x-C100″x (x = 10, 20, 30, and 50%) nanocomposites were prepared from ball milled Fe-Cu-Co alloy nanoparticles and micron sized graphite powders. The Structural characterization has been carried out using X-ray diffraction and FESEM measurements, while the electrical transport measurements were carried out by conventional four probe technique. Magnetoresistance (MR) measurements were performed at room temperature up to 45 kOe magnetic field. Magnetic measurements on the composites show all the composites to be ferromagnetic. Although magnetic properties show significant changes in magnetization values, comparable variations could not be detected in MR measurements, suggesting the origin of large positive magnetoresistance is non-magnetic. The existing models for the electron transport behaviour fail to explain the H 3/2 dependence of the MR. The possible mechanism for the origin of positive MR in these composites has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baibich M N, Broto J M, Fert A, Nguyen F V D, Petroff F, Etienne P, Creuzet G, Friederich A and Chazelas J, Phys. Rev. Lett. 61 (1988) 2472.

    Article  CAS  Google Scholar 

  2. Berkowitz A E, Mitchell J R, Carey M J, Young A P, Zhang S, Spada F E, Parker F T, Hutten A and Thomas G, Phys. Rev. Lett. 68 (1992) 3745.

    Article  CAS  Google Scholar 

  3. Tokura Y, Tomioka Y, Kuwahara H, Asamitsu A, Moritomo Y and Kasai M, J. Appl. Phys. 79 (1996) 5288.

    Article  CAS  Google Scholar 

  4. Delmo M P, Yamamoto S, Kasai S, Ono T and Kobayashi K, Nature 457 (2009) 1112.

    Article  CAS  Google Scholar 

  5. Xue Q Z, Zhang X and Zhu D D, J. Magn. Magn. Mater. 270 (2004) 397.

    Article  CAS  Google Scholar 

  6. Xue Q Z and Zhang X, Phys. Lett. A 313 (2003) 461.

    Article  CAS  Google Scholar 

  7. Xue Q Z, Zhang X and Zhu D D, Physica B 334 (2003) 216

    Article  CAS  Google Scholar 

  8. Mandal G, Srinivas V and Rao V V, J. Alloys and Comp. 484 (2009) 851.

    Article  CAS  Google Scholar 

  9. Zhang X, Xue Q Z and Zhu D D, Phys. Lett. A 320 (2004) 471.

    Article  CAS  Google Scholar 

  10. Dieny B, Speriosu V S, Parkin S S P, Gurney B A, Wilhoit D R and Mauri D, Phys. Rev. B 43 (1991) 1297.

    Article  CAS  Google Scholar 

  11. Williamson G K and Hall W H, Acta. Metallogr. 1 (1953) 22.

    Article  CAS  Google Scholar 

  12. El-Shazly O, Abou-aly A I, Saad N A and Tawk S G, Carbon 30 (1992) 1013.

    Article  CAS  Google Scholar 

  13. Pakhomov A B, Zhang X, Liu H, Wang X R, Huang H J and Yang S H, Physica B 279 (2000) 41.

    Article  CAS  Google Scholar 

  14. Lin Y H, Chiu S P and Lin J J, Nanotechnology 19 (2008) 365201.

    Article  Google Scholar 

  15. Sheng P, Phys. Rev. B 21 (1980) 2180

    Article  CAS  Google Scholar 

  16. Hu J and Rosenbaum T F, Nature Mater. 7 (2008) 697.

    Article  CAS  Google Scholar 

  17. Chien C L, Yang F Y, Liu K and Reich D H, J. Appl. Phys. 87 (2000) 4659.

    Article  CAS  Google Scholar 

  18. Liu K, Chien C L and Searson P C, Phys. Rev. B 58 (1998) R14681.

    Article  CAS  Google Scholar 

  19. Solin S A, Thio T Hines D R and Heremans J J, Science 289 (2000) 1530.

    Article  CAS  Google Scholar 

  20. Moussa J, Ram Mohan L R, Sullivan J, Zhou T, Hines D R and Solin S A, Phys. Rev. B 64 (2001) 184410.

    Article  Google Scholar 

  21. Badia F, Labarta A, Batlle X and Watson M L, J. Appl. Phys. 76 (1994) 6481

    Article  CAS  Google Scholar 

  22. Dieny B, Teixeira S R, Rodmacq B, Cowache C, Auffret S, Redon O, Pierre J, J. Magn. Magn. Mater. 130 (1994) 197.

    Article  CAS  Google Scholar 

  23. Ray A, Ranganathan R and Bansal C, Phys. Rev. B 56 (1997) 6073.

    Article  CAS  Google Scholar 

  24. Wang C, Xiao X, Hu H, Rong Y and Hsu T Y, Physica B 392 (2007) 72.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bhoi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhoi, B., Singh, V. Room-temperature positive magnetoresistance in (Fe0.64Cu0.06Co0.3)-graphite granular nanocomposites. Trans Indian Inst Met 64, 235 (2011). https://doi.org/10.1007/s12666-011-0047-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-011-0047-z

Keywords

Navigation