Skip to main content
Log in

Effect of process variables on texture and creep of pressurised heavy water reactor pressure tubes

  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Zr-2.5 wt%Nb pressure tubes are used for coolant channels of Pressurised Heavy Water Reactors (PHWRs). These pressure tubes are lifetime components of the reactor and have to sustain extremely harsh conditions of temperature, pressure and neutron irradiation during service. One of the major life limiting factors for pressure tubes is diametral creep. This causes dilation of the pressure tube leading to flow bypass and inefficient heat removal from fuel bundles. This underscores the importance of producing pressure tubes with higher creep resistance. The primary metallurgical parameters controlling the creep strength of Zr-2.5Nb pressure tubes are texture, microstructure, grain size, dislocation density and alloying additions. This includes the strengthening of beta phase due to niobium enrichment. Heat treated Zr-2.5Nb pressure tubes have been reported to have the highest creep strength. This paper briefly discusses the effects of various processing parameters on the microstructure and texture of pressure tubes, which enhance their creep resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cupp C R, J. Nucl. Mater., 6 (1961) 241.

    Article  ADS  Google Scholar 

  2. Tenckhoff E, Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy, ASTM STP 966.

  3. Kearns J J, Bettis (USA) Report, WAPD-TM-472 (1965).

  4. Holt R A, Christodoulou N and Causey A R, J. Nucl. Mater., 317 (2003) 256.

    Article  CAS  ADS  Google Scholar 

  5. Holt R A, J. Nucl. Mater., 372 (2008) 182.

    Article  CAS  ADS  Google Scholar 

  6. Coleman C E, Causey A R and Fidleris V, J. Nucl. Mater., 60 (1976) 185.

    Article  CAS  ADS  Google Scholar 

  7. Christopher Coleman, Malcolm Griffiths, Viatcheslav Grigoriev, Vladimir Kiseliov, Boris Rodchenkov, and Vladimir Markelov, Journal of ASTM International, 4(10) Paper ID JAI101111.

  8. Causey A R, Holt R A and MacEwen S R, Zirconium in Nuclear Industry, Sixth International Symposium, ASTM STP 824 (1984) 269.

    CAS  Google Scholar 

  9. Bickel G A and Griffiths M, J. Nucl. Mate. (2008), doi: 10.1016/j.jnucmat.2007.09.005

  10. Franklin D G, Lucas G E and Bement A L, Creep of Zirconium Alloys in Nuclear Reactors, ASTM STP 815, 1983.

  11. Hyun-Gil Kim, Yang-Hoon Kim, Byoung-Kwon Choi, Yong-Hwan Jeong, J. Nucl. Mater., 359 (2006) 268.

    Article  CAS  ADS  Google Scholar 

  12. Fidleris V, J. Nucl. Mater., 54 (1974) 199.

    Article  CAS  ADS  Google Scholar 

  13. Pande P, Narayan Rao M, Wali D K and Saibaba N, Proceedings of the Symposium Zirconium Alloys for Reactor Components, (1991) 155.

  14. Srivastava D, Dey G K and Banerjee S, Metall. Mater. Trans. A, 26A (1995) 2707.

    Article  CAS  ADS  Google Scholar 

  15. Kiran Kumar M, Vanitha C, Samajdar I, Dey G K, Tewari R, Srivastava D and Banerjee S, J. Nucl. Mater., 335 (2004) 48.

    Article  ADS  Google Scholar 

  16. Li Y, R. Rogge and Holt R A, Mater. Sci. Engg. A, 437 (2006) 10.

    Article  Google Scholar 

  17. Holt R A and Aldridge S A, J. Nucl. Mater., 135 (1985) 246.

    Article  CAS  ADS  Google Scholar 

  18. Salinas-Rodriguez A, Acta Metall. Mater. 43(2) (1995) 485.

    Article  CAS  Google Scholar 

  19. Burgers W G, Physica, 1 (1934) 561.

    Article  CAS  ADS  Google Scholar 

  20. Northwood D O and Fong W L, Metallography, 13 (1980) 97.

    Article  CAS  Google Scholar 

  21. Griffiths M, Winegar J E and Buyers A, J. Nucl. Mater. (2008), doi: 10.1016/j.jnucmat.2008.08.003.

  22. Aldridge S A and Cheadle B A, J. Nucl. Mater., 42 (1972) 32.

    Article  CAS  ADS  Google Scholar 

  23. Choudhuri G, et al., J. Nucl. Mater. (2007), doi:10.1016/j.jnucmat.2007.09.021

  24. Skinner B C and Dutton R, In Proceedings of Hydrogen effects on Material Behavior, MMS (1990) 73.

  25. Madhusoodanan K and Rupani B B, Requirements and Observations for development of fabrication route of AHWR pressure tube.

  26. Puls M P, Nuclear Engineering and Design, 171 (1997) 137.

    Article  CAS  Google Scholar 

  27. Fidleris V, J. Nucl. Mater., 159 (1988) 22.

    Article  CAS  ADS  Google Scholar 

  28. Kapoor K and Ramana Rao S V, unpublished work.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinayak Deshmukh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshmukh, V., Singha, U., Tonpe, S. et al. Effect of process variables on texture and creep of pressurised heavy water reactor pressure tubes. Trans Indian Inst Met 63, 397–402 (2010). https://doi.org/10.1007/s12666-010-0054-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-010-0054-5

Keywords

Navigation