Skip to main content

Advertisement

Log in

Optimisation of long-term creep strength of martensitic steels

  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Besides the reduction of greenhouse gases the increase of thermal efficiency is one of the major goals in modern material development for process and power plants. Increasing the steam inlet temperatures and pressures is at present the favoured method to increase the thermal efficiency. For the realization of 700°C power plants, new creep resistant ferritic-martensitic 9–12 wt. % Cr steels are required to be applied in the 650°C temperature range. An important task for the optimization of long term creep properties is the characterization of the changes in the microstructure during creep exposure. A sufficient long term creep strength is based on a small initial size and slow coarsening of the M23C6 precipitates as well as the dynamic precipitation of small V(C, N) particles along with the absence of Z-phase. The paper describes the R&D activities of the MPA University of Stuttgart in the frame work of national and international research projects aimed at the development and long term characterisation of optimised martensitic steels with higher long term creep strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kern T-U, Mayer K H, Berger C, Zies G, Schwienheer M, in 27. Vortragsveranstaltung FVHT, VDEH, (November 26th 2004) Düsseldorf.

  2. Abe F, in 4 th EPRI International Conference on Advanced in Materials Technology for Fossil Power Plants, Hilton Oceanfront Resort, Hilton Head Island, SC, USA, October 25–28, (2004) 273.

    Google Scholar 

  3. Sakuraya K, Okada H, Abe F, in 4 th EPRI International International Conference on Advanced in Materials Technology for Fossil Power Plants, Hilton Oceanfront Resort, Hilton Head Island S C, USA, (October 25–28, 2004) 1325.

    Google Scholar 

  4. Fujita T, Takahashi N, Transaction of ISIJ, 18 (1978) 702.

    CAS  Google Scholar 

  5. Fujita T, International Workshop of Advanced Heat-resisting Steels, Yokohama, Japan, (November 8th 1999)

  6. Park I-M, Fujita T, Transaction of ISIJ, 22 (1982) 830.

    CAS  Google Scholar 

  7. Hofer F, Warbichler P, Grogger W, Ultramicroscopy, 59 (1995) 15.

    Article  CAS  Google Scholar 

  8. Hofer F, Grogger W, Kothleitner G, Warbichler P, Ultramicroscopy, 67 (1997) 83.

    Article  CAS  Google Scholar 

  9. Brammer J S, Dewey M A P, Specimen Preparation for Electron Metallography, Blackwell Scientific Publications, Oxford, (1966)

    Google Scholar 

  10. Scheu C, Kauffmann F, Zies G, Maile K, Straub S, Mayer K H. Metallkunde, 06 (2005) 653.

    Google Scholar 

  11. Zies G, Maile K, Klenk A, Straub S and Mayer K H, in Proceedings of 27. MPA-Seminar, Stuttgart, (October 4–5, 2001)

  12. Mayer K H, Vergleichende Bewertung des Einflusses der Mikrostruktur auf die Kriechfestigkeit der borlegierten COSTStähle mit erhöhtem Cr- und Co-Gehalt, internal COST 536-report, (September 14th, 2004)

  13. Lundin L, High Resolution Microanalysis of Creep Resistant 9–12% Cr Steels, Doctoral Thesis for the Degree of Doctor of Philosophy, Department of Physics, Chalmers University of Technology and Gothenbourg University, Sweden, (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauffmann, F., Maile, K., Straub, S. et al. Optimisation of long-term creep strength of martensitic steels. Trans Indian Inst Met 63, 357–361 (2010). https://doi.org/10.1007/s12666-010-0047-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-010-0047-4

Keywords

Navigation