Skip to main content

Advertisement

Log in

Creep and fatigue issues for structural materials in demonstration fusion energy systems

  • Overview
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The structural materials proposed for use in future fusion energy systems must perform reliably in an environment consisting of intense neutron irradiation, high temperatures, and cyclic stress. Therefore, thermal creep and creep-fatigue (in addition to irradiation creep) are anticipated to be important issues for the engineering design of structural materials for fusion reactors. The key materials systems under consideration for structures of fusion reactors include 8–9%Cr ferritic/martensitic steels, oxide dispersion strengthened ferritic steels, vanadium alloys and SiC fiber-reinforced SiC matrix ceramic composites. The current elevated temperature creep-fatigue design rules based on the American Society of Mechanical Engineers (ASME) code are discussed, along with a brief review of creep-fatigue interaction mechanisms. Refinements to current international design codes to include radiation-induced phenomena such as reduction in uniform elongation have been performed in association with the engineering design of the ITER fusion energy device currently under construction in France. Several other creep-fatigue issues of potential importance for fusion energy applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith D L, Billone M C, Majumdar S, Mattas R F, Sze D-K, Journal of Nuclear Materials, 258–263 (1998) 65

    Article  Google Scholar 

  2. Mansur L K, Rowcliffe A F, Nanstad R K, Zinkle S J, Corwin W R and Stoller R E, Journal of Nuclear Materials, 329–333 (2004) 166

    Article  Google Scholar 

  3. Bloom E E, Conn R W, Davis J W, Gold R E, Little R, Schultz J R, Smith D L and Wiffen F W, Journal of Nuclear Materials, 122½3 (1984) 17

    Article  ADS  Google Scholar 

  4. Harries D R, Butterworth G J, Hishinuma A and Wiffen F W, Journal of Nuclear Materials, 191–194 (1992) 92

    Google Scholar 

  5. Piet S J, Cheng E T and Porter L J, Fusion Technology, 17 (1990) 636

    CAS  Google Scholar 

  6. Cheng E T, Journal of Nuclear Materials, 258–263 (1998) 1767

    Article  Google Scholar 

  7. Bloom E E, Journal of Nuclear Materials, 258–263 (1998) 7.

    Article  Google Scholar 

  8. Zinkle S J, Fusion Engineering and Design, 74 (2005) 31

    Article  CAS  Google Scholar 

  9. Klueh R L and Nelson A T, Journal of Nuclear Materials, 371 (2007) 37

    Article  CAS  ADS  Google Scholar 

  10. Odette G R, Alinger M J and Wirth B D, Annual Review of Materials Research, 38 (2008) 471

    Article  CAS  ADS  Google Scholar 

  11. Katoh Y, Snead L L, Henager C H, Jr., A Hasegawa, Kohyama A, Riccardi B and Hegeman H, Journal of Nuclear Materials, 367–370 (2007) 659

    Article  Google Scholar 

  12. Riou B, Improvement of ASME NH for grade 91 (creep-fatigue), STP-NU-013, ASME ST LLC, New York, N.Y., 2008

    Google Scholar 

  13. Asayama T and Tachibana Y, Creep-fatigue data and evaluation procedures for Grade 91 steel and Hastelloy XR for VHTR, STPNU-018, ASME ST LLC, New York, N.Y., 2008

    Google Scholar 

  14. Severud L K, Journal of Pressure Vessel Technology, 113 (1991) 34

    Article  Google Scholar 

  15. RCC-MR, 2007 Edition, Design and construction rules for mechanical components of FBR nuclear islands and high temperature applications, AFCEN, 2007

  16. DDS, The Japan Atomic Power Company, Demonstration fast breeder reactor elevated temperature structural design guideline, in Japanese, 1999

  17. R5, Assessment procedure for the high temperature responses of structures, Issue 3, British Energy, 2003

  18. Raj R, Mechanisms of creep-fatigue interaction, in Flow and Fracture at Elevated Temperatures, Ed. R. Raj, ASM, Metals Park, Ohio, (1985) pp. 215–249.

    Google Scholar 

  19. Fournier B, Sauzay M, Caës C, et al., International Journal of Fatigue, 30 (2008) 649

    Article  CAS  Google Scholar 

  20. Fournier B, Sauzay M, Caës C, et al., International Journal of Fatigue, 30 (2008) 663

    Article  CAS  Google Scholar 

  21. Fournier B, Sauzay M, Caës C, et al., International Journal of Fatigue, 30 (2008) 1797

    Article  CAS  Google Scholar 

  22. Yamamoto M and Ogata T, Journal of Engineering Materials and Technology, 122 (2000) 315

    Article  CAS  Google Scholar 

  23. Majumdar S and Kalinin G, Journal of Nuclear Materials, 283–287 (2000) 1424

    Article  Google Scholar 

  24. Puigh R J and Garner F A, Irradiation creep behavior of the fusion heats of HT9 and Modified 9Cr 1 Mo steels, Effects of Irradiation on Materials: 14th International Symposium STP 1046, ASTM, Philadelphia, PA, (1990) 527.

    Google Scholar 

  25. Garner F A, Toloczko M B and Sencer B H, Journal of Nuclear Materials, 276 (2000) 123

    Article  CAS  ADS  Google Scholar 

  26. Tavassoli A A F, Journal of Nuclear Materials, 258–263 (1998) 85

    Article  Google Scholar 

  27. Tavassoli A A F, Journal of Nuclear Materials, 302 (2002) 73

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Zinkle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sham, T.L., Zinkle, S.J. Creep and fatigue issues for structural materials in demonstration fusion energy systems. Trans Indian Inst Met 63, 331–337 (2010). https://doi.org/10.1007/s12666-010-0044-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-010-0044-7

Keywords

Navigation