Skip to main content
Log in

New approach to predict the long-term creep behaviour and evolution of precipitate back-stress of 9–12% chromium steels

  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Modern advanced 9–12 % Cr steels are complex alloys with excellent creep strength even at high temperatures up to 620°C. The mechanical properties of these steels are significantly influenced by the presence and stability of various precipitate populations. Numerous secondary phases grow, coarsen and, sometimes, dissolve again during heat treatment and service, which leads to a varying obstacle effect of these precipitates on dislocation movement. In this work, the experimentally observed creep rupture strength of an modified 9–12% Cr steel developed in the European COST Group is compared to the calculated maximal obstacle effect (Orowan stress) caused by the precipitates present in these steels for different heat treatment conditions. It is shown that the differences in creep rupture strength caused by different heat treatments disappear after long time service. This observation is discussed on the basis of the calculated evolution of the precipitate microstructure. The concept of boosting long-term creep rupture strength by maximizing the initial creep strength with optimum quality heat treatment parameters for precipitation strengthening is critically assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kern T U, Wieghardt K and Kirchner H, in Advances in Materials Technology for Fossil Power Plants — Proceedings from the Fourth International Conference, (eds) Viswanathan R, Gandy D, Coleman K, ASM International, Ohio (2005) 20.

    Google Scholar 

  2. Masuyama F, in Advances in Materials Technology for Fossil Power Plants — Proceedings from the Fourth International Conference, (eds) Viswanathan R, Gandy D, Coleman K, ASM International, Ohio (2005) 35.

    Google Scholar 

  3. Viswanathan R, Henry J F, Tanzosh J, Stanko G, Shingledecker J and Vitalis V, in Advances in Materials Technology for Fossil Power Plants — Proceedings from the Fourth International Conference, (eds) Viswanathan R, Gandy D, Coleman K, ASM International, Ohio (2005) 3.

    Google Scholar 

  4. Scarlin B, Kern T U and Staubli M, in Advances in Materials Technology for Fossil Power Plants — Proceedings from the Fourth International Conference, (eds) Viswanathan R, Gandy D, Coleman K, ASM International, Ohio (2005) 80.

  5. Bugge J, Kjaer S and Blum R, Energy 31 (2006) 1437.

    Article  CAS  Google Scholar 

  6. Kauffmann F, Zies G, Willer D, Scheu C, Maile K, Mayer K H and Straub S, in Proceedings of the 31. MPA-Seminar Werkstoffund Bauteilverhalten in der Energie- & Anlagentechnik, MPA Stuttgart, Stuttgart (2005) 27.1.

    Google Scholar 

  7. Sonderegger B, Characterisation of the Substructure of Modern Power Plant Steels using the EBSD-Method, Ph D Thesis, Graz University of Technology, Austria (2005).

    Google Scholar 

  8. Kozeschnik E and Holzer I, in Creep resistant steels, (eds) Abe F, T.-U. Kern, Viswanathan R, Woodhead Publishing, Cambridge (2008) 305.

    Google Scholar 

  9. Cerjak H, Hofer P, Schaffernak B, Spiradek K, Zeiler G, VGB Kraftwerkstechnik 77(9) (1997) 691.

    Google Scholar 

  10. Kozeschnik E and Buchmayr B, in Mathematical Modelling of Weld Phenomena 5, (ed) Cerjak H, IOM Communications LTD, Oxford (2001) 349.

    Google Scholar 

  11. Svoboda J, Fischer F D, Fratzl P and Kozeschnik E, Mater. Sci. Eng. A 385 (2004) 166.

    Google Scholar 

  12. Kozeschnik E, Svoboda J, Fratzl P and Fischer FD, Mater. Sci. Eng. A 385 (2004) 157.

    Google Scholar 

  13. Kozeschnik E, Svoboda J and Fischer FD, CALPHAD 28 (2005) 379.

    Article  Google Scholar 

  14. McLean M, Acta Metal Mater 33 (1985) 545.

    Article  CAS  Google Scholar 

  15. Polcik P, Modellierung des Verformungsverhaltens der warmfesten 9–12% Chromstähle im Temperaturbereich von 550–650°C, Ph D Thesis, Shaker Verlag, Aachen (1999).

    Google Scholar 

  16. Smith C S, Trans AIME, 175 (1948) 15.

    Google Scholar 

  17. Manohar P A, Ferry M and Chandra T, ISIJ International, 38 (1998) 913.

    Article  CAS  Google Scholar 

  18. McLean D, Transactions of the Metallurgical Society of AIME 242 (1968) 1193.

    CAS  Google Scholar 

  19. Eggeler G, Acta Metal Mater, 37 (1989) 3225.

    Article  CAS  Google Scholar 

  20. Sawada K, Takeda M, Maruyama K, Ishii R, Yamada M, Nagae Y and Komine R, Mat Sci Eng A, A267 (1999) 19.

    Article  CAS  Google Scholar 

  21. Dimmler G, Quantification of creep resistance and creep fracture strength of 9-12%Cr steel on microstructural basis, Ph D Thesis, Graz University of Technology, Austria (2003).

    Google Scholar 

  22. Èadek J, Creep in metallic materials, Elsevier, Prague (1988).

    Google Scholar 

  23. Ilschner B, Hochtemperatur-Plastizität, Springer Verlag, Berlin/Heidelberg (1973).

    Google Scholar 

  24. Ashby M, in Metallurgical Society Conference, (eds) Ansell G S, Cooper T D and Lenel F V, Gordon and Breach, New York (1968) 143.

    Google Scholar 

  25. Vanstone R W, COST 501/3 WP11 Metallography and alloy design group — Analysis of quantitative data, Internal Report, GEC Alsthom Turbine Generators Limited, Rugby UK (1994).

    Google Scholar 

  26. Rajek J, Computer simulation of precipitation kinetics in solid metals and application to the complex power plant steel CB8, Ph D Thesis, Graz University of Technology, Austria (2005).

    Google Scholar 

  27. Holzer I, Rajek J, Kozeschnik E and Cerjak H, in Proceedings from Materials for advanced power engineering 2006, (eds) Lecomte-Beckers J, Carton M, Schubert F, Ennis PJ, Forschungszentrum Jülich, Jülich (2006), p 1191.

    Google Scholar 

  28. Vodarek V and Strang A, in Proceedings from Materials for advanced power engineering 2002, (eds) Lecomte-Beckers J, Carton M, Schubert F, Ennis PJ, Forschungszentrum Jülich, Jülich (2002) 1223.

    Google Scholar 

  29. TCFE3 thermodynamic database, Thermo-Calc Software AB, Stockholm, Sweden, (1992–2004).

    Google Scholar 

  30. Hofer P, Mikrostrukturelle Analyse als Basis für die Entwicklung neuer Kraftwerkswerkstoffe am Beispiel von G-X12 CrMoWVNbN 10-1-1, Ph D Thesis, Graz University of Technology, Austria (1999).

    Google Scholar 

  31. Danielsen H K, Hald J, Grumsen F G, Somers M A J, Metall Mater Trans., 37A (2006) 2633.

    Article  CAS  Google Scholar 

  32. Guntz G, Julien M, Kottmann G, Pellicani F, Pouilly A and Vaillant JC, The T 91 Book — Ferritic tubes and pipe for high temperature use in boilers, Vallourec Industries, France (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Holzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holzer, I., Kozeschnik, E. & Cerjak, H. New approach to predict the long-term creep behaviour and evolution of precipitate back-stress of 9–12% chromium steels. Trans Indian Inst Met 63, 137–143 (2010). https://doi.org/10.1007/s12666-010-0019-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-010-0019-8

Keywords

Navigation