Skip to main content
Log in

Controls on the distribution and fractionation of rare earth elements in recent sediments from the rivers along the west coast of India

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The sediments of 90 rivers from five states along the west coast of India were analysed for their chemistry. The major element ratios of sediments suggest lateritic soils in Kerala, lateritic soils admixed with particulates weathered from Fe–Mn ores in Karnataka and Goa and, non-lateritic, chemically weathered soils in Maharashtra and Gujarat. The sediments from the Archean-Proterozoic (A-P) terrain are strongly weathered, while those from Deccan Traps (DT) terrain are intermediate to strongly weathered. The mean total rare earth elements content (∑REE) of sediments from the rivers of Kerala is much higher than in other states. ∑REE shows strong positive correlation with oxides of Fe, Mn and P from A-P terrain and Al, Fe and Ti from DT terrain and, strong positive correlation with heavy metals (Zr, U, Hf and Th) from both terrains. The low Sm/Nd and Y/Ho ratios corresponding to high chemical index of alteration (CIA) and, high ratios corresponding to high and low CIA are typical. The Post-Archean average Australian shale (PAAS)-normalized REE shows LREE- and MREE-enriched patterns in the sediments of Kerala and MREE- and HREE-enriched patterns in other sediments. Distinct positive Ce anomaly occurs in the sediments of Karnataka, Goa and south Maharashtra and, weak positive to weak negative Ce anomaly in the sediments of other states. The Eu anomaly is negative in the silts of south Kerala and positive in all other sediments. The primary sources for REEs are adsorbed REEs onto secondary mineral phases and clay minerals and, heavy minerals. The change in REE patterns is primarily related to the source rock composition. Fractionation of REEs is related to the intensity of chemical weathering, supply of REE and transport processes. The average REE composition of river sediments from peninsular India is more mafic than in UCC and World Rivers Average Clay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Abedini A, Khosravi M, Calagari AA (2019) Geochemical characteristics of the Arbanos karst-type bauxite deposit, NW Iran: implications for parental affinity and factors controlling the distribution of elements. J Geochem Explor 200:249–265. https://doi.org/10.1016/j.gexplo.2018.09.004. (ISSN 0375-6742)

    Article  CAS  Google Scholar 

  • Alvarez-Vazquez MA, De Una-Alvarez E, Prego R (2022) Patterns and abundance of Rare Earth elements in sediments of a Bedrock River (Mino River, NW Iberian Peninsula). Geoscience 12:105. https://doi.org/10.3390/geosciences12030105

    Article  CAS  Google Scholar 

  • Aubert D, Stille P, Probs AA (2021) REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim Cosmochim Acta 65:387–406

    Article  Google Scholar 

  • Babechuk MG, Fedo C (2022) Analysis of chemical weathering trends across three compositional dimensions: applications to modern and ancient mafic-rock weathering profiles. Can J Earth Sci. https://doi.org/10.1139/cjes-2022-0053

    Article  Google Scholar 

  • Babechuk MG, Widdowson M, Kamber BS (2014) Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan traps, India. Chem Geol 363:56–75

    Article  CAS  Google Scholar 

  • Babechuk MG, Widdowson M, Murphy M, Kamber BS (2015) A combined Y/Ho, high field strength element (HFSE) and nd isotope perspective on basalt weathering, Deccan traps, India. Chem Geol. https://doi.org/10.1016/j.chemgeo.2014.12.017

    Article  Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333

    Article  CAS  Google Scholar 

  • Bau M, Zhao Z (2008) Geochemistry of mineralization with exchangeable REY in the weathering crust of granitic rocks in South China. Ore Geol Rev 35:519–535

    Article  Google Scholar 

  • Bayon G, Toucanne S, Skonieczny C, Andre L, Bermell S, Cheron S, Barrat JA (2015) Rare earth elements and neodymium isotopes in world river sediments revisited. Geochim Cosmochim Acta 170:17–38

    Article  CAS  Google Scholar 

  • Bayon G, Delvigne C, Ponzevera E, Borges AV, Darchambeau F, De Deckker P, Lambert T, Monin L, Toucanne S, André L (2018) The silicon isotopic composition of fine-grained river sediments and its relation to climate and lithology. Geochim Cosmochim Acta 229:147–161. https://doi.org/10.1016/j.gca.2018.03.015. (ISSN 0016-7037)

    Article  CAS  Google Scholar 

  • Bock B, McLennan SM, Hanson GN (1998) Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill formation) and the Taconian Orogeny in New England. Sedimentology 45:635–655

    Article  CAS  Google Scholar 

  • Bondre NP, Duraiswami RA, Dole G (2004) A brief comparison of lava flows from the Deccan Volcanic Province and the Columbia-Oregon Plateau Flood Basalts: Implications for models of flood basalt emplacement. Proc Indian Acad Sci (Earth Planet Sci) 113:809–817

    Article  Google Scholar 

  • Braun JJ, Pagel M, Muller JP, Bilong P, Michard A, Guillet B (1990) Cerium anomalies in lateritic profiles. Geochim Cosmochim Acta 54:781–795

    Article  CAS  Google Scholar 

  • Braun JJ, Pagel M, Herbillon A, Rosin C (1993) Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: a mass balance study. Geochim Cosmochim Acta 57:4419–4434

    Article  CAS  Google Scholar 

  • Censi P, Sprovieri M, Saiano F, Di Geronimo SI, Larocca D, Placenti F (2007) The behaviour of REEs in Thailand’s Mae Klong estuary: suggestions from the Y/Ho ratios and lanthanide tetrad effects. Estuar Coast Shelf Sci 71:569–579

    Article  Google Scholar 

  • Chamley H (1989) Clay mineralogy. Springer-Verlag, Germany, p 623

    Google Scholar 

  • Cullers RL, Barrett T, Carlso R, Robinson B (1987) Rare earth element and mineralogical changes in Holocene soil and stream sediment: a case study in the Wet Mountains, Colorado, USA. Chem Geol 63:275–297

    Article  CAS  Google Scholar 

  • Desai AG, Arolkar DB, French D, Viegas A, Vishwanath TA (2009) Petrogenesis of the Bondla layered mafic-ultramafic complex Usgaon, Goa. J Geo Soc India 73:697–714

    Article  Google Scholar 

  • Dhoundial DP, Paul DK, Sarkar A, Trivedi JR, Gopalan K, Potts PJ (1987) Geochronology and geochemistry of the precambrian granitic rocks of Goa, SW India. J Precam Res 36:287–302

    Article  CAS  Google Scholar 

  • Du DD, Chen LQ, Bai YH, Hu HP (2021) Variations in rare earth elements with environmental factors in lake surface sediments from 17 lakes in western China. J Mt Sci 18:7. https://doi.org/10.1007/s11629-020-6040-4

    Article  Google Scholar 

  • Duddy LR (1980) Redistribution and fractionation of rare-earth and other elements in a weathering profile. Chem Geol 30:363–381

    Article  CAS  Google Scholar 

  • Dupre B, Gaillardet J, Rousseau D, Allegre CJ (1996) Major and trace elements of river-borne materials: the Congo Basin. Geochim Cosmochim Acta 60:1301

    Article  CAS  Google Scholar 

  • Egashira K, Fujii K, Yamasaki S, Virakornphanich P (1997) Rare earth elements and clay minerals of paddy soils from the central region of the Mekong River. Laos Geoderma 78:237

    Article  CAS  Google Scholar 

  • Feng J (2010) Behaviour of rare earth elements and yttrium in ferro manganese concretions, gibbsite spots, and the surrounding terra rossa over dolomite during chemical weathering. Chem Geol 271:112–132

    Article  CAS  Google Scholar 

  • Feng D, Chen D, Peckmann J, Bohrmann G (2010) Mineral composition, rare earth elements, and trace elements from samples of the northern Congo deep-sea fan. PANGAEA. https://doi.org/10.1594/PANGAEA.771775

    Article  Google Scholar 

  • Feng JL, Hu ZG, Ju JT, Zhu LP (2011) Variations in trace element (including rare earth element) concentrations with grain sizes in loess and their implications for tracing the provenance of eolian deposits. Quatern Int 236:116–126. https://doi.org/10.1016/j.quaint.2010.04.024

    Article  Google Scholar 

  • Feng JL, Zhang JF, Gao SP, Li CF, Ju JT, Liu XM, Pei LL, Wang KY (2021) Evidence for extreme Sm–Nd fractionation during chemical weathering. Chem Geol 577:120284

    Article  CAS  Google Scholar 

  • Folk RL (1968) Petrology of the sedimentary rocks. Hemphills, Austin, TX, p 170

    Google Scholar 

  • Frey FA, Haskin MA, Poetz JA, Haskin LA (1968) Rare Earth abundances in some basic rocks. J Geophys Res 73(18):6085–6098. https://doi.org/10.1029/JB073i018p06085

    Article  CAS  Google Scholar 

  • Garçon M, Chauvel C (2014) Where is basalt in river sediments, and why does it matter? Earth Planet Sci Lett 407:61–69

    Article  Google Scholar 

  • Garzanti E, Ando S, France-Lanord C, Vezzoli G, Censi P, Galy V, Najman Y (2010) Mineralogical and chemical variability of Cuvial sediments: 1. Bedload sand (Ganga–Brahmaputra, Bangladesh). Earth Planet Sci Lett 299:368–381

    Article  CAS  Google Scholar 

  • Garzanti E, Ando S, France-Lanord C, Censi P, Vignola P, Galy V, Lupker M (2011) Mineralogical and chemical variability of f luvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh). Earth Planet Sci Lett 302:107–120

    Article  CAS  Google Scholar 

  • Ghose NC (1976) Composition and origin of Deccan basalts. Lithos 9(1):65–73. https://doi.org/10.1016/0024-4937(76)90057-8

    Article  CAS  Google Scholar 

  • Gokarn SG, Gupta G, Rao CK (2004) Geoelectric structure of the Dharwar Craton from magnetotelluric studies: Archean suture identified along the Chitradurga-Gadag schist belt. Geophys J Int 158:712–728. https://doi.org/10.1111/j.1365-246X.2004.02279.x

    Article  CAS  Google Scholar 

  • Gokul AR, Srinivasan MD, Gopalakrishnan K, Viswanathan LS (1985) Stratig raphy and structure of Goa. Seminar volume on Earth resources for Goa’s development. Geo Surv of India, pp 1–13

  • Goldstein SJ, Jacobsen SB (1988) Rare earth elements in river waters. Earth Plan Sci Lett 89:35–47

    Article  CAS  Google Scholar 

  • Govindaraju K (1994) Compilation of working values and descriptions for 383 geostandards. Geostand Newsl 18:1–158

    Article  CAS  Google Scholar 

  • Gurumurthy GP (2024) Geochemical split among the suspended and mud sediments in the Nethravati River: insights to compositional similarity of peninsular gneiss and the Deccan Basalt Derived sediments, and its implications on tracing the provenance in the Indian Ocean. Geochem Geophys Geosyst 25:e2024GC011642. https://doi.org/10.1029/2024GC011642

  • Henderson P (1984) General geochemical properties and abundances of the rare earth elements. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Oxford, p 510

    Google Scholar 

  • Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving per aluminous granite suites. Geochim Cosmochim Acta 63:489–508

    Article  CAS  Google Scholar 

  • Irzon R, Syafri I, Hutabarat J, Sendjaja P (2016) REE comparison between Muncung granite samples and their weathering products, Lingga Regency, Riau Islands. Indones J Geosci 3:149–161

    Article  Google Scholar 

  • Jean A, Beauvais A, Chordon D, Arnaud N, Jayananda M, Mathe PE (2020) Weathering history and landscape evolution of western ghats (India) from 40Ar/39Ar dating of supergene K–Mn oxides. J Geol Soc 177:523–536. https://doi.org/10.1144/jgs2019-048

    Article  CAS  Google Scholar 

  • Jin L, Ma L, Dere A, White T, Mathur R, Brantley SL (2017) REE mobility and fractionation during shale weathering along a climate gradient. Chem Geol 466:352–379. https://doi.org/10.1016/j.chemgeo.2017.06.024

    Article  CAS  Google Scholar 

  • Jung HS, Lim DI, Choi JY, Yoo HS, Rho KC, Lee HB (2012) Rare earth element compositions of core sediments from the shelf of the South Sea, Korea: their controls and origins. Cont Shelf Res 48:75–86

    Article  Google Scholar 

  • Kale V (2009) The western ghat: the great escarpment of India. https://doi.org/10.1007/978-90-481-3055-9_26

  • Kaotekwar AB, Rajkumar R, Meshram, Satyanarayana M, Keshav Krishna A, Charan SN (2014) Structures, Petrography and Geochemistry of Deccan Basalts at Anantagiri Hills, Andhra Pradesh. J Geol Soc India 84:675–685

    Article  CAS  Google Scholar 

  • Kawabe I, Kitahara Y, Naito K (1991) Non-chondritic tetrad effect yttrium /holmium ratio and lanthanide observed in pre-cenozoic limestones. J Geochem 25:31–44

    Article  CAS  Google Scholar 

  • Kessarkar PM, Suja S, Sudheesh V (2015) Iron ore pollution in Mandovi and Zuari estuarine sediments and its fate after mining ban. Environ Monit Assess 187:572. https://doi.org/10.1007/s10661-015-4784-z

    Article  CAS  Google Scholar 

  • Krishnan MS (1968) Geology of India and Burma. Madras, Higgin Bothoms, p 536

    Google Scholar 

  • Kumar A, Ahmad T (2007) Geochemistry of mafic dykes in part of Chotanagpur gneissic complex: petrogenetic and tectonic implications. J Geochem 41:173–186. https://doi.org/10.2343/geochemj.41.173

    Article  CAS  Google Scholar 

  • Lee HM, Lee SG, Kim H, Lee JI, Lee MJ (2021) REE tetrad effect and Sr-Nd isotope systematics of A-type Pirrit Hills granite from west Antarctica. J Miner 11:792. https://doi.org/10.3390/min11080792

    Article  CAS  Google Scholar 

  • Lightfoot PC, Hawkesworth CJ, Devey CW, Rogers NW, van Calsteren PWC (1990) Source and di¡erentia tion of Deccan Trap lavas: implications of geochemical and mineral chemical variations. J Petrol 31:1165–1200

    Article  CAS  Google Scholar 

  • Liu H, Guoc H, Pourret O, Wang Z, Sun Z, Zhang W, Liu (2021) Distribution of rare earth elements in sediments of the North China Plain: a probe of sedimentation process. Appl Geochem 134:105089

    Article  CAS  Google Scholar 

  • Ma JL, Wei GJ, Xu YF, Long WG, Sun WD (2007) Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China. Geochim Cosmochim Acta 71:3223–3237

    Article  CAS  Google Scholar 

  • Maharana C, Srivastava D, Tripathi JK (2018) Geochemistry of sediments of the peninsular rivers of the Ganga basin and its implication to weathering, sedimentary processes and provenance. Chem Geol 483:1–20

    Article  CAS  Google Scholar 

  • Mallik TK, Vasudevan V, Verghese PA, Machado T (1987) The black sand placer deposits of Kerala, Southwest India. Mar Geol 77:129–150

    Article  Google Scholar 

  • Manikyamba C, Kerrich R, Naqvi SM, Rammohan M (2004) Geochemical systematics of tholeiitic basalts from the 2.7 Ga Ramgiri-Hungund greenstone belt, Dharwar Craton: an intraoceanic arc. Precambrian Res 134:21–39

    Article  CAS  Google Scholar 

  • Marchandise S, Robin E, Ayrault S, Roy-Barman M (2014) U–Th REE–Hf bearing phases in Mediterranean Sea sediments: implications for isotope systematics in the ocean. Geochem Cosmochim Acta 131:47–61

    Article  CAS  Google Scholar 

  • Martin FJ, Doyne HC (1927) Laterite and lateritic soils in Sierra Leone. J Agr Sci 17:530–547

    Article  CAS  Google Scholar 

  • Mascarenhas A, Kalavampara G (2009) Natural resources of Goa: a geological perspective. Geological Society of Goa, Miramar, p 213 ( ISBN: 978-81-908737-0-3)

    Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Miner 21:169–200

    CAS  Google Scholar 

  • McLennan SM, Hemming S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, prove nance and tectonics. In: Johnsson JM, Basu A (eds) Processes controlling the composition of clastic sediments, vol 284. Geol Soc Am, USA, pp 1–21

    Chapter  Google Scholar 

  • Merchel G, Bau M, Dantas EL (2007) Contrasting impact of organic and inorganic nanoparticles and colloids on the behaviour of particle-reactive elements in tropical estuaries: an experimental study. Geochem Cosmochem Acta 197:1–13

    Article  Google Scholar 

  • Monecke T, Kempe U, Monecke J, Sala M, Wolf D (2002) Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim Cosmichim Acta 66:1185–1196

    Article  CAS  Google Scholar 

  • Munemoto T, Solongob T, Okuyamab A, Fukushic K, Yundend A, Batboldd T, Altansukhd O, Takahashie Y, Iwaic H, Nagaoc S (2020) Rare earth element distributions in rivers and sediments from the Erdenet Cu–Mo mining area, Mongolia. Appl Chem 123:104800

    CAS  Google Scholar 

  • Naqvi SM (2005) Geology and evolution of the Indian plate (from Hadean to Holocene 4 Ga to 4 Ka). Capital Publishing Company, New Delhi, p 450

    Google Scholar 

  • Narayanaswamy S (1992) Geochemistry and genesis of laterite in parts of Cannanore District, North Kerala. PhD thesis, Cochin University of Science and Technology, p 116

  • Nesbitt HW, Markovics G (1997) Weathering of granodiorite crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochim Cosmochim Acta 61:1653–1670

    Article  CAS  Google Scholar 

  • Nesbitt HW, Young GM (1996) Petrogenesis of sediments in the absence of chemical weathering: effects of abrasion and sorting on bulk composition and mineralogy. Sediment 43:341–358

    Article  CAS  Google Scholar 

  • Nozaki Y, Lerche D, Sotto AD, Snidvongs A (2000) The estuarine geochemistry of rare earth elements and Indium in the Chao Phraya River, Thailand. Geochim Cosmochim Acta 64:2983–3994

    Article  Google Scholar 

  • Ohlander B, Land M, Ingri J, Widerlund A (2014) Mobility and transport of nd isotopes in the vadose zone during weathering of granitic till in a boreal forest. Aquat Geochem 20:1–17

    Article  Google Scholar 

  • Pourmand A, Dauphas N, Ireland TJ (2012) A novel extraction chromatography and MC–ICP–MS technique for rapid analysis of REE, sc and Y: revising CI-chondrite and post-archean Australian Shale (PAAS) abundances. Chem Geol 291:38–54

    Article  CAS  Google Scholar 

  • Pourret O, Davranche M (2013) Rare earth element sorption onto hydrous manganese oxide: a modeling study. J Colloid Interface Sci 395:18–23

    Article  CAS  Google Scholar 

  • Prajith A, Rao VP, Kessarkar PM (2015) Controls on the distri bution and fractionation of yttrium and rare earth elements in core sediments from the Mandovi estuary, western India. Cont Shelf Res 92:59–71

    Article  Google Scholar 

  • Radhakrishna BP (1983) Archaean granite-greenstone terrain of south Indian shield. In: Naqvi SM, Rogers JJW (eds) Precambrian of South India, vol 4. Geol Soc India Memoir, pp 1–46

  • Rao KL (1975) India’s water wealth. Orient Longman Ltd, New Delhi, p 255

    Google Scholar 

  • Rudnic RL, Gao S (2003) The composition of the continental crust. In: Rudnick RL, Holland HD, Turekian KT (eds) Treatise on geochemistry, vol 3. Elsevier Pergamon, Oxford, UK, pp 1–64

    Google Scholar 

  • Sai Babu Sk, Ramana RV, Rao VP, Rammohan M, Krishna AK, Sawant S, Satyasree N, Krishna AK (2020) Composition of the peninsular India rivers average clay (PIRAC): a reference sediment composition for the upper crust from peninsular India. J Earth Syst Sci 129:39

    Article  Google Scholar 

  • Sai Babu Sk, Ramana RV, Rao VP, Rammohan M, Sawant S, Satyasree N, Krishna AK (2021) Rare earth elements of the sediments in rivers and estuaries of the east coast of India. Curr Sci 120:519–537

    Article  Google Scholar 

  • Sai Babu SK, Prajith A, Rao VP, Mohan MR, Ramana RV, Satyasree NS (2023) Composition of river sediments from Kerala, southwest India: inferences on lateritic weathering. J Earth Syst Sci 132:150

    Article  Google Scholar 

  • Sai Babu Sk, Prajith A, Rao VP, Rammohan M, Ramana RV, Satyasree N (2024) Sources of rare earths and prospects for a viable REE deposit in river sediments of Kerala, Southwest India. Curr Sci 126:345–359

    Google Scholar 

  • Sanematsu K, Murakami H, Watanabe Y, Duangsurigna S, Vilayhack S (2009) Enrichment of rare earth elements (REE) in granitic rocks and their weathered crusts in central and southern Laos. Bull Geol Sur Jpn 60(11/12):527–558

    Article  CAS  Google Scholar 

  • Sanematsu K, Carmela T, Yasushi W, Takuya E (2021) Spectral and chemical studies of iron and manganese oxyhydroxides in laterite developed on ultramafic rocks. Resour Geol 71. https://doi.org/10.1111/rge.12272

  • Sharma A, Sensarma S, Kumar K, Khanna PP, Saini NK (2013) Mineralogy and geochemistry of the Mahi River sediments in tectonically active western India: implications for Deccan large igneous province source, weathering and mobility of elements in a semi-arid climate. Geochim Cosmochim Acta 104:63–83 ISSN 0016-7037. https://doi.org/10.1016/j.gca.2012.11.004

    Article  CAS  Google Scholar 

  • Shynu R, Rao VP, Kessarkar PM, Rao TG (2011) Rare earth elements in suspended and bottom sediments of the Mandovi estuary, central west coast of India: influence of mining. Estu Coast Shelf Sci 94:355–368

    Article  CAS  Google Scholar 

  • Shynu R, Rao VP, Parthiban G, Balakrishnan S, Narvekar T, Kessarkar PM (2013) REE in suspended particulate matter and sediment of the Zuari estuary and adjacent shelf, western India: influence of mining and estuarine turbidity. Mar Geol 346:326–342

    Article  CAS  Google Scholar 

  • Shynu R, Rao VP, Kessarkar PM (2017) Major and trace metals in suspended and bottom sediments of the Mandovi and Zuari estuaries: distribution, source and pollution. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-0300-z

    Article  Google Scholar 

  • Silva GMMV, Marina MS, Pinto C, Cristina SP, Carvalho SC (2016) Major, trace and REE geochemistry of recent sediments from lower Catumbela River (Angola). J Afr Earth Sci 115:203–217

    Article  CAS  Google Scholar 

  • Singh P, Rajamani V (2001) REE geochemistry of recent clastic sediments from the Kaveri Flood plains, southern India: implication to source area weathering and sedimentary processes. Geochim Cosmochim Acta 65:3093–3108

    Article  CAS  Google Scholar 

  • Soman K (2002) Geology of Kerala, 2nd edn. Geological Society of India, Bangalore, p 335

    Google Scholar 

  • Song YH, Choi MS (2009) REE geochemistry of fine-grained sediments from major rivers around the Yellow Sea. Chem Geol 266:328–342

    Article  Google Scholar 

  • Sreenath AV, Abhilash S, Vijaykumar P et al (2022) West coast of India’s rainfall is becoming more convective. j Clim Atmos Sci 5. https://doi.org/10.1038/s41612-022-00258-2

  • Su N, Yang S, Guo Y, Yue W, Wang X, Yin P, Huang X (2017) Revisit of rare earth element fractionation during chemical weathering and river sediment transport. Geochem Geophys Geo syst 18:935–955. https://doi.org/10.1002/2016GC006659

    Article  CAS  Google Scholar 

  • Suja S, Lina F, Rao VP (2017) Distribution and fractionation of rare earth elements and Yttrium in suspended and bottom sediments of the Kali estuary, western India. Environ Earth Sci 76:174. https://doi.org/10.1007/s12665-017-6497-9

    Article  CAS  Google Scholar 

  • Sultan K, Shazili NA (2009) Rare earth elements in tropical surface water, soil and sediments of the Terengganu River Basin, Malaysia. J Rare Earths 27:1072

    Article  Google Scholar 

  • Takahashi Y, Yoshidab H, Sato C, Hamab K, Yusab Y, Shimizua H (2002) W- and M-type tetrad effects in REE patterns for water–rock systems in the Tono uranium deposit, central Japan. Chem Geol 184:311–335

    Article  CAS  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: Its composition and evolution. Blackwell Scientific Publications, Palo Alto, CA, USA, Malden, p 312

    Google Scholar 

  • Wei W, Ling S, Wu X, Li X, Liao X (2021) Investigations on mineralogy and geochemistry of a black shale profile on the northern Yangtze platform, China: weathering fate of rare earth elements and yttrium (REY) and its implications. Appl Geochem 126:104897

    Article  CAS  Google Scholar 

  • Widdowson M, Cox KG (1996) Uplift and erosion history of the Deccan traps, India: evidence from laterites and drainage patterns of the western ghats and Konkan Coast. Earth Planet Sci Lett 137:57–69

    Article  CAS  Google Scholar 

  • Widdowson M, Gunnell Y (2004) Laterites of the Konkan and Kanara coastal Plateaux as keys to understanding the denudation chronologies of the Western Ghats. In: Gunnell Y, Radhakrishna BP (eds), Sahyadri: the great escarpment of the Indian sub-continent. Memoir vol 47 (2). Geological Society of India, pp 719–752

  • Xu K, Milliman JD (2009) Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam. Geomorphology 104(3/4):276–283

    Article  Google Scholar 

  • Yang SY, Jung HS, Choi MS, Li CX (2002) The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments. Earth Planet Sci Lett 201:407–419

    Article  CAS  Google Scholar 

  • Zhang K, Shields GA (2022) Sedimentary ce anomalies: secular change and implications for paleoenvironmental evolution. Earth Sci Rev 229:104015. https://doi.org/10.1016/j.earscirev.2022.104015

    Article  CAS  Google Scholar 

  • Zhang CS, Wang LJ, Zhang S (1998) Geochemistry of rare earth elements in the mainstream of the Yangtze River, China. Appl Geochem 13:451–462

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Vice-chancellor, VFSTR, Vignan’s University and Director CSIR-NGRI for their encouragement. This work was carried out using INSA-Senior Scientist Fellowship to VP Rao from the Indian National Science Academy, New Delhi and post-doctoral fellowship to Saibabu from Vignan’s University. We acknowledge these organization for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

All the authors are contributed Equally to wrote the manuscript text and prepared figures and Tables.

Corresponding author

Correspondence to V. Purnachandra Rao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sai Babu, S., Rao, V.P. & Mohan, M.R. Controls on the distribution and fractionation of rare earth elements in recent sediments from the rivers along the west coast of India. Environ Earth Sci 83, 547 (2024). https://doi.org/10.1007/s12665-024-11842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-024-11842-5

Keywords

Navigation