Skip to main content

Advertisement

Log in

Assessment of groundwater dynamics and its relationship to alpine ponds (Serra da Estrela, N Portugal): coupling isotopic and hydrogeochemical signatures

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Serra da Estrela Natural Park is situated on the highest mountain in central Portugal, being the climate of this research region strongly affected by its geographic location and geomorphology. To find out possible relationships between shallow groundwater systems and alpine ponds, groundwater samples from 15 springs were collected between 2010 and 2011 along six sampling campaigns and chemical and isotopic determinations were performed. In the same mountain sector 7 alpine ponds were also sampled and analysed. From the isotopic data of the spring waters, it was possible to establish the Local Meteoric Water Line (ẟ2H = 6.58 ± 0.29 ẟ18O + 1.31 ± 1.23). An isotopic fractionation of the water vapour air masses with the altitude was also identified: 0.13‰/100 m from the oxygen-18 values. The sampled shallow groundwaters are low mineralized and belong to the Cl-Na-type, reflecting small water–rock interaction and short underground flow paths. Based on the chemical signatures and mineralization increase in some shallow groundwaters, it was possible to identify the presence of anthropogenic pollution ascribed to snow melting by de-icing salts in the roads. In addition to precipitation, the isotopic composition of some alpine ponds shows signs of recharge/contribution from shallow groundwater, identified by a depletion in isotopic composition (δ2H and δ18O values); in parallel to this isotopic depletion, the increase in surface water mineralisation is only feasible if a contribution from snowmelt and road de-icing salts to these surface systems is assumed, enhancing the existence of anthropogenic contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this.

References

  • AEMET (2011) Atlas Climático Ibérico, Temperatura do Ar e Precipitação (1971–2000). Agência Estatal de Meteoreologia e Instituto de Meteorologia de Portugal

    Google Scholar 

  • Almeida AM (2019) Contribuição das assinaturas isotópicas (2H, 18O e 3H) na caracterização da dinâmica de águas subterrâneas e sua relação com as lagoas: Parque Natural da Serra da Estrela: Setor Seia-Torre-Covilhã. Instituto Superior Técnico, Lisboa (MSc Dissertation). https://fenix.tecnico.ulisboa.pt/departamentos/decivil/dissertacao/1691203502343566

  • Almeida AM, Carreira PM, Marques JM, Espinha Marques J, Paiva M, Carvalho A, Mansilha C (2021) Groundwater contribution to alpine ponds recharge in Serra da Estrela Natural Park, Portugal. In: Abrunhosa M, Chambel A, Peppoloni S, Chaminé HI (eds) Advances in geoethics and groundwater management: theory and practice for a sustainable development. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham pp 157–161 https://doi.org/10.1007/978-3-030-59320-9_34

  • Araguás-Araguás L, Froehlich K, Rozanski K (2000) Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol Process 14:1341–1355

    Article  Google Scholar 

  • Aureli A (2002) What’s ahead in UNESCO’s International Hydrological Programme (IHP VI 2002–2007). Hydrogeol J 10:349–350. https://doi.org/10.1007/s10040-002-0211-y

    Article  Google Scholar 

  • Barry RG (1994) Past and potential future changes in mountain environments: a review. In: Beniston M (ed) Mountain environments in changing climates. Routledge, London, pp 1–24

    Google Scholar 

  • Beniston M (1994) Mountain environments in changing climates. Routledge

    Google Scholar 

  • Boronina A, Renard P, Balderer W, Stichler W (2005) Application of tritium in precipitation and in groundwater of the Kouris catchment (Cyprus) for description of the regional groundwater flow. Appl Geochem 20:1292–1308. https://doi.org/10.1016/j.apgeochem.2005.03.007

    Article  CAS  Google Scholar 

  • Carreira PM, Araujo MF, Nunes D (2005) Isotopic composition of rain and Water vapour samples from Lisbon region: Characterization of monthly and daily events. IAEA-TECDOC-1453 isotopic composition of precipitation in the mediterranean basin in relation to air circulation patterns and climate. IAEA, Vienna, pp 141–155

    Google Scholar 

  • Carreira PM, Valério P, Nunes D, Araújo MF (2006) Temporal and seasonal variations of stable isotopes (2H and 18O) and tritium in precipitation over Portugal. Proceedings of Isotopes in Environmental Studies – Aquatic Forum 2004. IAEA, Vienna, pp 370–373

    Google Scholar 

  • Carreira PM, Nunes D, Valerio P, Araujo MF (2009) A 15-year record of seasonal variation in the isotopic composition of precipitation water over continental Portugal. J Radioan Nucl Chem 281:153–156. https://doi.org/10.1007/s10967-009-0064-0

    Article  CAS  Google Scholar 

  • Carreira PM, Marques JM, Espinha Marques J, Chaminé HI, Fonseca PE, Monteiro Santos F, Moura RM, Carvalho JM (2011) Defining the dynamics of groundwater in Serra da Estrela Mountain area, central Portugal: an isotopic and hydrogeochemical approach. Hydrogeol J 19:117–131. https://doi.org/10.1007/s10040-010-0675-0

    Article  CAS  Google Scholar 

  • Carreira PM, Marques JM, Nunes D (2014) Source of groundwater salinity in coastline aquifers based on environmental isotopes (Portugal): natural vs human interference. A review and reinterpretation. Appl Geochem 41:163–175. https://doi.org/10.1016/j.apgeochem.2013.12.012

    Article  CAS  Google Scholar 

  • Carreira PM, Costa A, Soares AM, Nunes D, João M, Valadas A (2019) Carbon-14 content as a support for Moura mineral water aquifer conceptual model. Sust Wat Resour Manag 5(4):1455–1468. https://doi.org/10.1007/s40899-019-00313-6

    Article  Google Scholar 

  • Carvalho A (2013) Hidrogeologia ambiental da região do Parque Natural da Serra da Estrela (Setor de Seia-Torre-Covilhã): uma abordagem multidisciplinar. Ph.D. Thesis Faculdade de Ciências da Universidade do Porto

  • Chaminé HI, Abrunhosa M, Barbieri M, Naves A, Errami E, Aragão A, Di Capua G (2021) Hydrogeoethics in sustainable water resources management facing water scarcity in Mediterranean and surrounding regions. Med Geosc Rev 3:289–292. https://doi.org/10.1007/s42990-021-00069-2

    Article  Google Scholar 

  • Collins DN, Gordon JY (1981) Meltwater hydrology and hydrochemistry in snow- and ice-covered mountain catchments. Nord Hydrol 12:319–334

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–468

    Article  Google Scholar 

  • Daveau S (1971) La glaciation de la Serra da Estrela. Finisterra 6:5–40

    Google Scholar 

  • Daveau S (1985) Mapas climatológicos de Portugal. Nevoeiro e nubulosidade. Contrastes térmicos. Memórias do Centro de Estudos Geográficos 7. Lisboa, Portugal

  • Daveau S, Coelho C, Costa VG, Carvalho L (1977) Répartition et rythme des precipitation au Portugal. Memórias do Centro de Estudos Geográficos 3. Lisboa, Portugal

  • Espinha Marques J, Duarte JM, Constantino AT, Martins AA, Aguiar C, Rocha FT, Inácio M, Marques JM, Chaminé HI, Teixeira J, Samper J, Borges FS, Carvalho JM (2007) Vadose zone characterisation of a hydrogeologic system in a mountain region: Serra da Estrela case study (Central Portugal). In: Chery L, de Marsily Gh (eds) Aquifer systems management: Darcy's legacy in a World of impending water shortage. Selected papers on Hydrogeology, IAH 10:207–221

  • Espinha Marques J, Samper J, Pisani B, Alvares D, Carvalho JM, Chaminé HI, Marques JM, Vieira GT, Mora C, Sodré Borges F (2011) Evaluation of Water Resources in a high-mountain basin in Serra da Estrela, Central Portugal, using a semi-distributed hydrological model. Environ Earth Sci 62:1219–1234. https://doi.org/10.1007/s12665-010-0610-7

    Article  Google Scholar 

  • Espinha Marques J, Marques JM, Chaminé HI, Carreira PM, Fonseca PE, Monteiro Santos F, Moura R, Samper J, Pisani B, Teixeira J, Carvalho JM, Rocha FT, Borges FS (2013) Conceptualising a mountain hydrologic system by using an integrated groundwater assessment (Serra da Estrela, Central Portugal): a review. Geosc J 17(3):371–386. https://doi.org/10.1007/s12303-013-0019-x

    Article  Google Scholar 

  • Espinha Marques J, Marques JM, Carvalho A, Carreira PM, Mansilha C (2017) Impact of road deicing on the hydrogeochemistry of groundwater from a mountain area (Serra da Estrela, Central Portugal). Proced Eart Planet Sci 17:964–967. https://doi.org/10.1016/j.proeps.2017.01.039

    Article  Google Scholar 

  • Espinha Marques J, Marques JM, Carvalho A, Carreira PM, Moura R, Mansilha C (2019) Groundwater resources in a Mediterranean mountainous region: environmental impact of road deicing. Sustain Wat Resour Manag 5:305–317. https://doi.org/10.1007/s40899-017-0170-z

    Article  Google Scholar 

  • Espinha Marques J, Antunes SC, Honrado J, Carvalho-Santos C, Carreira PM, Marques JM, Mansilha C (2021) Geoethical implications of water pollution by road deicing: lessons and way forward in a mountain protected area (Serra da Estrela, Central Portugal). Med Geosc Rev 3:349–360. https://doi.org/10.1007/s42990-021-00065-6

    Article  Google Scholar 

  • Ferreira N, Vieira G (1999) Guia geológico e geomorfológico do Parque Natural da Serra da Estrela: locais de interesse geológico e geomorfológico. Parque Natural da Serra da Estrela, Edição Instituto da Conservação da Natureza e Instituto Geológico e Mineiro, Lisboa

  • Galego Fernandes P, Carreira PM, Nunes D (2009) Environmental isotopes (15N and 18O) in the assessment of groundwater degradation - Aveiro Quaternary aquifer (NW- Portugal). J Radioan Nucl Chem 281:157–160. https://doi.org/10.1007/s10967-009-0062-2

    Article  CAS  Google Scholar 

  • Gat JR, Mook WG, Meijer HAJ (2001) Atmospheric Water. In: Environmental Isotopes in the Hydrological Cycle. Principles and Applications. Ed. W.G. Mook, IHP-V Technical Documents in Hydrology. UNESCO – IAEA, Vol II (39)

  • Gonfiantini R, Roche MA, Olivry JC, Fontes J-C, Zuppi GM (2001) The altitude effect on the isotopic composition of tropical rains. Chem Geol 181:147–167. https://doi.org/10.1016/S0009-2541(01)00279-0

    Article  CAS  Google Scholar 

  • Gooddy DC, Lapworth DJ, Bennett SA, Heaton THE, Williams PJ, Surridge BWJ (2016) A multi-stable isotope framework to understand eutrophication in aquatic ecosystems. Wat Res 88:623–633. https://doi.org/10.1016/j.watres.2015.10.046

    Article  CAS  Google Scholar 

  • Gourcy LL, Groening M, Aggarwal PK (2005) Stable oxygen and hydrogen isotopes. In: Aggarwal PK, Gat JR, Froehlich KFO (eds) Isotopes in the Water Cycle. Past, Present and Future of a Developing Science. IAEA 39–51

  • Hassan RM, Scholes RJ, Ash N (2005) Ecosystems and Human well-being: current state and trends, findings of condition and trends working group. Millennium Ecosystem Assessment, Island Press, Washington

    Google Scholar 

  • Heilweil VM, Solomon DK, Gingerich SB, Verstraeten IM (2009) Oxygen, hydrogen, and helium isotopes for investigating groundwater systems of the Cape Verde Islands, West Africa. Hydrogeol J17:1157–1174

    Article  Google Scholar 

  • Huth AK, Leydecker A, Sickman JO, Bales RC (2004) A two-component hydrograph separation for three high-elevation catchments in the Sierra Nevada. California Hydrol Process 18(9):1721–1733

    Article  Google Scholar 

  • IAEA (1976) Procedure and technique critique for Tritium enrichment by electrolysis at IAEA laboratory. Technical Procedure 19, IAEA-IHS Laboratories, Vienna (internal report)

  • IAEA (2005) Isotopic composition of precipitation in the Mediterranean Basin in relation to air circulation patterns and climate. IAEA-TECDOC-1453, IAEA, Vienna

  • IAEA (2009), Laser spectroscopic analysis of liquid water samples for stable hydrogen and oxygen isotopes. Training Course Series No. 35, IAEA, Vienna

  • Juhlke TR, Sültenfuß J, Trachte K, Huneau F, Garel E, Santoni S, Barth JAC, van Geldern R (2020) Tritium as a hydrological tracer in Mediterranean precipitation events. Atmos Chem Phys 20:3555–3568

    Article  CAS  Google Scholar 

  • Kammoun S, Re V, Trabelsi R, Zouari K, Daniele S (2018) Assessing seasonal variations and aquifer vulnerability in coastal aquifers of semi-arid regions using a multi-tracer isotopic approach: the case of Grombalia (Tunisia). Hydrogeol J 26:2575–2594

    Article  CAS  Google Scholar 

  • Kendall C, McDonnell JJ (1998) Isotope tracers in catchment hydrology. Elsevier

    Google Scholar 

  • Kharaka YK, Thordsen JJ, White LD (2002) Isotope and chemical compositions of meteoric and thermal waters and snow from the Greater Yellowstone National Park Region. US Department of the Interior, US Geological Survey. Open-File Report: 02–194

  • Lautensach H (1929) Eiszeitstudien in der Serra da Estrela (Portugal). Zeitschrift Für Gletscherkunde 18:324–369

    Google Scholar 

  • Liotta M, Grassa F, D’Alessandro W, Favara R, Gagliano Candela E, Pisciotta A, Scaletta C (2013) Isotopic composition of precipitation and groundwater in Sicily, Italy. Appl Geochem 34:199–206. https://doi.org/10.1016/j.apgeochem.2013.03.012

    Article  CAS  Google Scholar 

  • Makarigakis AK, Jimenez-Cisneros BE (2019) UNESCO’s contribution to face global water challenges. Water 11(2):388. https://doi.org/10.3390/w11020388

    Article  Google Scholar 

  • Marchina C, Lencioni V, Paoli F, Rizzo M, Bianchini G (2020) Headwaters’ isotopic signature as a tracer of stream origins and climatic anomalies: evidence from the Italian Alps in Summer 2018. Water 12(2):390. https://doi.org/10.3390/w12020390

    Article  CAS  Google Scholar 

  • Marques JM, Carreira PM, Espinha Marques J, Chaminé HI, Fonseca PE, Monteiro Santos FA, Almeida E, Gonçalves R, Almeida PG, Gomes A, Teixeira J, Carvalho JM, Rocha FT (2008) Role of high mountain areas in catchment hydromineral resources—Northern/Central Portugal: environmental issues. In: Prats D, Brebbia CA, Villacampa Esteve Y (eds) Water Pollution IX. WIT Press, Southampton, pp 95–104

    Google Scholar 

  • Marques JM, Carreira PM, Espinha Marques J, Chaminé HI, Fonseca PE, Monteiro Santos FA, Eggenkamp HGM, Teixeira J (2010) The role of geosciences in the assessment of low-temperature geothermal resources (N-Portugal): a review. Geosci J 14(4):329–446. https://doi.org/10.1007/s12303-010-0034-0

    Article  CAS  Google Scholar 

  • Matiatos I, Wassenaar LI, Monteiro LR et al (2021) Global patterns of nitrate isotope composition in rivers and adjacent aquifers reveal reactive nitrogen cascading. Commun Eart Environ 2:52. https://doi.org/10.1038/s43247-021-00121-x

    Article  Google Scholar 

  • Migón P, Vieira G (2014) Granite geomorphology and its geological controls, Serra da Estrela, Portugal. Geomorphology 226:1–14

    Article  Google Scholar 

  • Mook WG (2000) Environmental isotopes in the hydrological cycle. Principles and Applications, Volume I. IHP-V Technical Documents in Hydrology

  • Mora C (2010) A synthetic map of the climatopes of the Serra da Estrela (Portugal). J Maps 6:591–608. https://doi.org/10.4113/jom.2010.1112

    Article  Google Scholar 

  • Moran TA, Marshall SJ, Evans EC, Sinclair KE (2007) Altitudinal gradients of stable isotopes in Lee-Slope precipitation in the Canadian Rocky Mountains. Arct Antarct Alp Res 39(3):455–467. https://doi.org/10.1657/1523-0430(06-002)

    Article  Google Scholar 

  • Nakamura R (1971) Runoff analysis by electrical conductance of water. J Hydrol 14:197–212

    Article  Google Scholar 

  • Oliveira JT, Pereira, E, Ramalho M, Antunes MT, Monteiro JH (coords) (1992) Carta Geológica de Portugal à escala 1/500000, 5 Edn., 2 folhas. Serviços Geológicos de Portugal, Lisboa

  • Paiva M (2016) Estudo morfométrico e hidrogeoquímico de Lagoas da Serra da Estrela. Faculdade de Ciências da Universidade do Porto, Porto (Msc Dissertation). https://hdl.handle.net/10216/103812

  • Peppoloni S, Di Capua G (2022) Geoethics: manifesto for an ethics of responsibility towards the Earth. Springer, Cham. https://doi.org/10.1007/978-3-030-98044-3

    Book  Google Scholar 

  • Pinder GF, Jones JF (1969) Determination of groundwater component of peak discharge from the chemistry of total runoff. Water Resour Res 5:438–445

    Article  CAS  Google Scholar 

  • Rasa K, Peltovuoria T, Hartikainema H (2006) Effects of deicing chemicals sodium chloride and potassium formate on cadmium solubility in a coarse mineral soil. Sci Total Environ 2–3:819–825

    Article  Google Scholar 

  • Re V, Sacchi E, Kammoun S, Tringali C, Trabelsi R, Zouari K, Daniele S (2017) Integrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources: the case of Grombalia Basin (Tunisia). Sci Total Environ 593–594:664–676. https://doi.org/10.1016/j.scitotenv.2017.03.151

    Article  CAS  Google Scholar 

  • Ribeiro A, Kullberg MC, Kullberg JC, Manuppella G, Phipps S (1990) A review of Alpine tectonics in Portugal: foreland detachment in basement and cover rocks. Tectonophysics 184(3–4):357–366. https://doi.org/10.1016/0040-1951(90)90448-H

    Article  Google Scholar 

  • Ribeiro A, Munhá J, Dias R, Mateus A, Pereira E, Ribeiro L, Fonseca PE, Araújo A, Oliveira JT, Romão J, Chaminé HI, Coke C, Pedro J (2007) Geodynamic evolution of the SW Europe Variscides. Tectonics. https://doi.org/10.1029/2006TC002058

    Article  Google Scholar 

  • Rodrigues PMSM, Rodrigues RMM, Costa BHF, Tavares Martins AAL, Esteves da Silva J (2010) Multivariate analysis of the water quality in the Serra da Estrela (Portugal) Natural Park as a consequence of road deicing with salt. Chemom Intell Lab Syst 102:130–135. https://doi.org/10.1016/j.chemolab.2010.04.014

    Article  CAS  Google Scholar 

  • Roig-Planasdemut M, Llorens P, Latron J (2016) Spatio-temporal variability of shallow groundwater during rain-fall-runoff events in a Mediterranean mountain catchment (Vallcebre research catchments, Spain). Geophys Res Abstracts EGU 18:262

    Google Scholar 

  • Roig-Planasdemut M, Stewart M, Latron J, Llorens P, Morgenstern (2015) Transit time estimation using tritium and stable isotopes in a Mediterranean mountain catchment. Geophys Res Abstracts 17:EGU2015–184

  • Rozanski K, Gonfiantini R, Araguás-Araguás L (1991) Tritium in the global atmosphere: distribution patterns and recent trends. J Phys g: Nucl Part Phys 17:S523–S536

    Article  Google Scholar 

  • Rozanski K, Araguás-Araguás L, Gonfiantini R (1992) Relation between long-term of oxygen-18 isotope composition of precipitation and climate. Science 258:981–985

    Article  CAS  Google Scholar 

  • Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. Clim Change Continent Isotopic Records Geophys Monograph 78:1–36

    Google Scholar 

  • Samper J, Pisani B, Espinha Marques J (2015) Hydrological models of interflow in three Iberian mountain basins. Environ Earth Sci 73:2645–2656. https://doi.org/10.1007/s12665-014-3676-9

    Article  Google Scholar 

  • Santos PSM, Otero M, Santos EBH, Duarte AC (2011) Chemical composition of rainwater at a coastal town on the southwest of Europe: What changes in 20 years? Sci Total Environ 409:3548–3553. https://doi.org/10.1016/j.scitotenv.2011.05.031

    Article  CAS  Google Scholar 

  • Scholl MA, Murphy SF (2014) Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico. Water Resour Res 50:4305–4322. https://doi.org/10.1002/2013WR014413

    Article  Google Scholar 

  • Sileo NR, Dapeña C, Liaudat DT (2020) Isotopic composition and geochemistry o a periglacial Andean catchment and its relevance in the knowledge of water resources in mountainous areas. Isot Environ Health Stud 56(5–6):480–494

    Article  CAS  Google Scholar 

  • Tazioli A, Cervi F, Doveri M, Mussi M, Deiana M, Ronchetti F (2019) Estimating the isotopic gradiente for hydrogeological studies in mountainous áreas: are the low-yield springs suitable? Insights from the northern Apennines of Italy. Water 11:1764. https://doi.org/10.3390/w11091764

    Article  CAS  Google Scholar 

  • Teixeira C, Brito de Carvalho LH, Santos JP, Martins Peres A, Barros RF, Pilar L, Fernandes AP, Rocha AT (1967) Notícia Explicativa da Folha 17-D – Gouveia, Carta Geológica de Portugal, na escala de 1/50,000. Serviços Geológicos de Portugal, Lisboa

  • Teixeira C, Santos JP; Carvalho HF, Peinador Fernandes A, Vairinho M (1974) Notícia Explicativa da Folha 20-B – Covilhã, Carta Geológica de Portugal, na escala de 1/50,000. Serviços Geológicos de Portugal, Lisboa

  • Trenouth WR, Gharabaghi B, Perera N (2015) Road salt application planning tool for winter deicing operations. J Hydrol 524:401–410

    Article  Google Scholar 

  • UN (2022) The sustainable development goals report 2020. United Nations, New York

    Google Scholar 

  • UNESCO (2022) The United Nations world water development report 2022: groundwater: making the invisible visible. United Nations Educational, Scientific and Cultural Organization, Paris, France

  • Unnikrishna PV, McDonnell JJ, Kendall C (2002) Isotope variations in a Sierra Nevada snowpack and their relation to meltwater. J Hydrol 260:38–57

    Article  CAS  Google Scholar 

  • Vasil’chuk Y, Chizhova J, Frolova N, Budantseva N, Kireeva M, Oleynikov A, Tokarev I, Rets E, Vasil’chuk A (2020) A variation of stable isotope composition of snow with altitude on the Elbrus Mountain, Central Caucasus. Geography Environ Sustain 13(1):172–182. https://doi.org/10.24057/2071-9388-2018-22

    Article  Google Scholar 

  • Vázquez A, Costoya M, Peña RM, García S, Herrero C (2003) A rainwater quality monitoring network: a preliminary study of the composition of rainwater in Galicia (NW Spain). Chemosphere 51:375–386. https://doi.org/10.1016/S0045-6535(02)00805-6

    Article  Google Scholar 

  • Vieira G (2008) Combined numerical and geomorphological reconstruction of the Serra da Estrela plateau icefield, Portugal. Geomorphology 97:190–207. https://doi.org/10.1016/j.geomorph.2007.02.042

    Article  Google Scholar 

  • Vieira G, Mora C, Ramos M (2003) Ground temperature regimes and geomorphological dynamics in a Mediterranean mountain (Serra da Estrela, Portugal). Geomorphology 52:57–72. https://doi.org/10.1016/S0169-555X(02)00248-9

    Article  Google Scholar 

  • Vieira G, Mora C, Gouveia MM (2004) Oblique rainfall and contemporary geomorphological dynamics (Serra da Estrela, Portugal). Hydrol Proc 18:807–824. https://doi.org/10.1002/hyp.1259

    Article  Google Scholar 

  • Vieira G, Jansen J, Ferreira N (2005) Environmental setting of the Parque Natural da Serra da Estrela: a short-note. In: Pinto Correia T, Bunce RGH, Howard DC (eds) Proceedings of the Landscape ecology and management of Atlantic mountains, Landscape Ecology Series, Vol. 2, IALE Publication Series, London, pp 53–64

  • Zeman LJ, Slaymaker HO (1975) Hydrochemical analysis to discriminate variable runoff source areas in an alpine basin. Arct Alp Res 7(4):331–340

    Article  Google Scholar 

  • Zhou Y, Guo H, Zhang Z, Lu H, Jia Y, Cao Y (2018) Characteristics and implication of stable carbon isotope in high arsenic groundwater systems in the northwest Hetao Basin, Inner Mongolia, China. J Asian Eart Sci 163:70–79. https://doi.org/10.1016/j.jseaes.2018.05.018

    Article  Google Scholar 

Download references

Acknowledgements

FEDER-EU supported this work through COMPETE Funds and the Portuguese Foundation for the Science and Technology (FCT), namely under the strategic projects: C2TN|IST – UIDB/04349/2020; CERENA|IST – UIDB/04028/2020; ICT|FCUP – UIDB/04683/2020 and UIDP/04683/2020; CEGOT|FLUP – UIDB/04084/2020, and GeoBioTec|UA – UID/GEO/04035/2020. In addition, this work was partially supported by the LABCARGA|ISEP re-equipment program (IPP-ISEP| PAD'2007/08). An early draft of this manuscript was critically read by two anonymous reviewers and we gratefully acknowledge their contributions.

Funding

FEDER-EU supported this work through COMPETE Funds and the Portuguese Foundation for the Science and Technology (FCT), namely under the strategic projects: C2TN|IST – UIDB/04349/2020; CERENA|IST – UIDB/04028/2020; ICT|FCUP – UIDB/04683/2020 and UIDP/04683/2020; CEGOT|FLUP – UIDB/04084/2020, and GeoBioTec|UA –UID/GEO/04035/2020.

Author information

Authors and Affiliations

Authors

Contributions

PMC, JMM and JEM designed the research. PMC, JMM, JME, MP, AMA, AC, JT and HIC gave input on field surveys, groundwater inventory, regional geology, remote sensing, hydrogeomorphology, and GIS-based mapping of the studied area and surroundings. PMC, AMA and JMM carried out water chemistry and isotopic analysis. CM realised environmental hydrochemistry analysis. JME, MP, and AC performed hydropedological studies at the study site. All authors contributed to the data analysis and interpretation and discussed the results. PMC, AMA, JMM, JEM, CM and HIC wrote the manuscript with the contributions of all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paula M. Carreira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carreira, P.M., Almeida, A.M., Paiva, M. et al. Assessment of groundwater dynamics and its relationship to alpine ponds (Serra da Estrela, N Portugal): coupling isotopic and hydrogeochemical signatures. Environ Earth Sci 83, 328 (2024). https://doi.org/10.1007/s12665-024-11623-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-024-11623-0

Keywords

Navigation