Skip to main content

Advertisement

Log in

Potential failure mechanism and movement process of an ancient river-damming landslide in the SE Qinghai–Tibet Plateau

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Large ancient landslides are widely distributed in the Jinsha River suture zone of the SE Qinghai–Tibet Plateau. Understanding how these landslides were triggered and moved is important for future landslide risk management. Here, a detailed investigation of an ancient river-damming landslide in this zone is conducted. Field survey suggests that the deep-seated landslide developed in a scarp rock slope composed of Mesoproterozoic gneiss and Paleozoic hornblende schist. The debris volume of the landslide is estimated to be 3.3 × 107 m3. Evidence of a landslide damming event, including dam remnants and upstream lacustrine sediments, has been well preserved. Optically stimulated luminescence dating shows the landslide formed at about 5.4 ka BP. The geological setting, frequent seismic activity, and characteristics of the landslide source area suggest that the landslide was most likely triggered by a strong earthquake. The movement process of the landslide under seismic shaking is simulated using the discrete element method, with the novelty of applying a viscoelastic boundary to the model to avoid seismic wave reflection at the slope base. The simulation results show that the progressive failure process of the landslide lasts 120 s, and could be divided into three stages: (1) rupture of the rock mass at t = 0–10 s, (2) formation of a sliding surface at t = 10–20 s, and (3) rapid movement of the landslide body with a maximum movement rate of 34 m/s and blockage of the river at t = 20–120 s. This study could provide guidance for understanding the dynamic process of ancient landslides in the Qinghai–Tibet Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

Data will be available upon request.

References

  • Antolini F, Barla M, Gigli G, Giorgetti A, Intrieri E, Casagli N (2016) Combined finite-discrete numerical modeling of runout of the Torgiovannetto di Assisi rockslide in central Italy. Int J Geomech 16(6):04016019

    Article  Google Scholar 

  • Atapour H, Moosavi M (2014) The influence of shearing velocity on shear behavior of artificial joints. Rock Mech Rock Eng 47(5):1745–1761

    Article  ADS  Google Scholar 

  • Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newton fluid under shear. P Roy Soc Lond A Mat 225(1160):49–63

    Article  ADS  Google Scholar 

  • Bao Y, Zhai S, Chen J, Xu P, Sun X, Zhan J, Zhang W, Zhou X (2020) The evolution of the Samaoding paleolandslide river blocking event at the upstream reaches of the Jinsha River, Tibetan Plateau. Geomorphology 351:106970

    Article  Google Scholar 

  • Barnard PL, Owen LA, Sharma MC, Finkel RC (2001) Natural and human-induced landsliding in the Garhwal Himalaya of northern India. Geomorphology 40(1):21–35

    Article  ADS  Google Scholar 

  • Bastola S, Cai M, Damjanac B (2020) Slope stability assessment of an open pit using lattice-spring-based synthetic rock mass (LS-SRM) modeling approach. J Rock Mech Geotech Eng 12(5):927–942

    Article  Google Scholar 

  • Bertran P (2003) The rock-avalanche of February 1995 at Claix (French Alps). Geomorphology 54(3):339–346

    Article  ADS  Google Scholar 

  • Boultbee N, Stead D, Schwab J, Geertsema M (2006) The Zymoetz river rock avalanche, June 2002, British Columbia, Canada. Eng Geol 83(1–3):76–93

    Article  Google Scholar 

  • Bozzano F, Lenti L, Martino S, Montagna A, Paciello A (2011) Earthquake triggering of landslides in highly jointed rock masses: reconstruction of the 1783 Scilla rock avalanche (Italy). Geomorphology 129(3–4):294–308

    Article  ADS  Google Scholar 

  • Chen J, Dai F, Lv T, Cui Z (2013) Holocene landslide-dammed lake deposits in the Upper Jinsha River, SE Tibetan Plateau and their ages. Quat Int 298:107–113

    Article  Google Scholar 

  • Chen S (2016) Study on the origin and stability of Xuelongnang landslide dam in the upper on Jinsha river valley. Thesis of China University of Geosciences

  • Cruden DM, Hungr O (1986) The debris of the Frank slide and theories of rockslide-avalanche mobility. Can J Earth Sci 23(3):425–432

    Article  Google Scholar 

  • Cui P, Zhu YY, Han YS, Chen XQ, Zhuang JQ (2009) The 12 May Wenchuan earthquake-induced landslide lakes: distribution and preliminary risk evaluation. Landslides 6:209–223

    Article  Google Scholar 

  • Cundall PA, Strack ODL (1979) A discrete numerical mode for granular assemblies. Géotechnique 29(1):47–65

    Article  Google Scholar 

  • Dai FC, Lee CF, Deng JH, Tham LG (2005) The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China. Geomorphology 73(3):277–278

    ADS  Google Scholar 

  • Davies T, McSaveney M (2009) The role of rock fragmentation in the motion of large landslides. Eng Geol 109(1–2):67–79

    Article  Google Scholar 

  • Delaney KB, Evans SG (2015) The 2000 Yigong landslide (Tibetan Plateau), rockslide-dammed lake and outburst flood: review, remote sensing analysis, and process modelling. Geomorphology 246:377–393

    Article  ADS  Google Scholar 

  • Delgado F, Zerathe S, Audin L, Schwartz S, Benavente C, Carcaillet J, Bourlès DL, Team A (2020) Giant landslide triggerings and paleoprecipitations in the CentralWestern Andes: the aricota rockslide dam (South Peru). Geomorphology 350:106932

    Article  Google Scholar 

  • Deng JH, Gao YJ, Yu ZQ, Xie HP (2019) Analysis on the formation mechanism and process of Baige landslides damming the upper reach of Jinsha River. China Adv Eng Sci 51(01):9–16

    Google Scholar 

  • Dortch JM, Owen LA, Haneberg WC, Caffee MW, Dietsch C, Kamp U (2009) Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quat Sci Rev 28(11–12):1037–1054

    Article  ADS  Google Scholar 

  • Fan X, Zhan W, Dong X, van Westen C, Xu Q, Dai L, Yang Q, Huang R, Havenith HB (2018) Analyzing successive landslide dam formation by different triggering mechanisms: the case of the Tangjiawan landslide, Sichuan, China. Eng Geol 243:128–144

    Article  Google Scholar 

  • Fan X, Xu Q, Alonso-Rodriguez A, Li W, Zheng G, Dong X, Huang R (2019) Successive landsliding and damming of the Jinsha River in eastern Tibet, China: prime investigation, early warning, and emergency response. Landslides 16:1003–1020

    Article  Google Scholar 

  • Fan X, Dufresne A, Subramanian SS, Strom A, Hermanns R, Stefanelli TC, Hewitt K, Yunus AP, Dunning S, Capra L, Geertsema M, Miller B, Casagli N, Jansen JD, Xu Q (2020) The formation and impact of landslide dams–state of the art. Earth Sci Rev 203:103116

    Article  Google Scholar 

  • Fan X, Dufresne A, Whiteley J, Yunus AP, Subramanian SS, Okeke CAU, Pánek T, Hermanns RL, Ming P, Strom A, Havenith HB, Dunning S, Wang G, Stefanelli CT (2021) Recent technological and methodological advances for the investigation of landslide dams. Earth Sci Rev 218:103646

    Article  Google Scholar 

  • Feng ZY, Lo CM, Lin QF (2017) The characteristics of the seismic signals induced by landslides using a coupling of discrete element and finite difference methods. Landslides 14(2):661–674

    Article  Google Scholar 

  • Gao G, Meguid MA, Chouinard LE, Zhan W (2020a) Dynamic disintegration processes accompanying transport of an earthquake-induced landslide. Landslides 18(4):909–933

    Google Scholar 

  • Gao X, Gu D, Huang D, Zhang W, Zheng Y (2020b) Development of a DEM-based method for modeling the water-induced failure process of rock from laboratory to engineering-scale. Int J Geomech 20(7):04020080

    Article  Google Scholar 

  • GB 50287–2016 (2016) Code for hydropower engineering geological investigation. China Planning Press, Beijing

    Google Scholar 

  • Gong C, Huang H, Chen L, Yang D, Tain Y, Li H, Li Y, Zhang J, Gao B (2023) Characteristics of collapse development and geohazard chain model in the Dongcuo-qu Basin, eastern Tibet. Drill Eng 50(5):1–10

    Google Scholar 

  • Grøneng G, Lu M, Nilsen B, Jenssen AK (2010) Modelling of time-dependent behavior of the basal sliding surface of the Åknes rockslide area in western Norway. Eng Geol 114(3–4):414–422

    Article  Google Scholar 

  • Guo XH, Lai ZP, Sun Z, Li X, Yang T (2014) Luminescence dating of Suozi landslide in the upper Yellow River of the Qinghai-Tibetan Plateau, China. Quat Sci Rev 349:159–166

    Google Scholar 

  • Guo L, Chen G, Gong S, Sun H, Chantat K (2021) Analysis of rainfall-induced landslide using the extended DDA by incorporating matric suction. Comput Geotech 135:104145

    Article  Google Scholar 

  • Han XD (2018) Comprehensive analysis and numerical simulation for Qulong landslide dam event in the Late Pleistocene. Jilin University, Thesis

  • Itasca (2017) Particle flow code in two dimension (PFC 2D) v5.0 (Version 5.0). Itasca Consulting Group, Minneapolis

  • Ivars DM, Pierce ME, Darcel C, Reyes-Montes J, Potyondy DO, Young RP, Cundall PA (2011) The synthetic rock mass approach for jointed rock mass modelling. Int J Rock Mech Min Sci 48(2):219–244

    Article  Google Scholar 

  • Lee HS, Park YJ, Cho TF, You KH (2001) Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading. Int J Rock Mech Min Sci 38(7):967–980

    Article  Google Scholar 

  • Li YH, Hao M, Ji LY, Qin SL (2014) Fault slip rate and seismic moment deficit on major active faults in mid and south part of the Eastern margin of Tibet plateau. Chin J Geophys 57(4):1062–1078

    Google Scholar 

  • Li WC, Deng G, Cao W, Xu C, Chen J, Lee ML (2019) Discrete element modeling of the Hongshiyan landslide triggered by the 2014 Ms 6.5 Ludian earthquake in Yunnan, China. Environ Earth Sci 78(16):520

    Article  ADS  Google Scholar 

  • Li Y, Chen J, Zhou F, Song S, Zhang Y, Gu F, Cao C (2020) Identification of ancient river-blocking events and analysis of the mechanisms for the formation of landslide dams in the Suwalong section of the upper Jinsha River, SE Tibetan Plateau. Geomorphology 368:107351

    Article  Google Scholar 

  • Li Y, Feng XY, Yao AJ, Lin S, Wang R, Guo M (2021) A massive ancient river-damming landslide triggered by buckling failure in the upper Jinsha River, SE Tibetan Plateau. Bull Eng Geol Environ 80(2):5391–5403

    Article  Google Scholar 

  • Lin YL, Li YX, Yang GL, Li Y (2017) Experimental and numerical study on the seismic behavior of anchoring frame beam supporting soil slope on rock mass. Soil Dyn Earthq Eng 98:12–23

    Article  Google Scholar 

  • Liu Z, Su L, Zhang C, Iqbal J, Hu B, Dong Z (2020) Investigation of the dynamic process of the Xinmo landslide using the discrete element method. Comput Geotech 123:103561

    Article  Google Scholar 

  • Lo CM, Lin ML, Tang CL, Hu JC (2011) A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit. Eng Geol 123(1–2):22–39

    Article  Google Scholar 

  • Long W, Chen J, Wang PF, Xu C, Liu H, Sun JZ (2015) Formation mechanism and back analysis of parameters of the Temi large-scale ancient landslide in the upper Jinsha River. Chin J Seismol Res 38(4):568–575

    Google Scholar 

  • Luzio ED, Biachi-Fasani G, Esposito C, Saroli M, Cavinato GP, Scarascia-Mugnozza G (2004) Massive rock-slope failure in the Central Apennines (Italy): the case of the Campo di Giove rock avalanche. Bull Eng Geol Environ 63(1):1–12

    Article  Google Scholar 

  • Miao Z, Zhang Y, Li Q, Yi J (2023) The deformation mechanism analysis of gently inclined and consequent sliding-buckling rock landslides based on PFC2D. Drill Eng 50(5):11–17

    Google Scholar 

  • Ouyang C, An H, Zhou S, Wang Z, Su P, Wang D, Cheng D, She J (2019) Insights from the failure and dynamic characteristics of two sequential landslides at Baige village along the Jinsha River, China. Landslides 16:1397–1414

    Article  Google Scholar 

  • Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364

    Article  Google Scholar 

  • Reid AJ, Wilson CJL, Liu S (2005) Structural evidence for the Permo-Triassic tectonic evolution of the Yidun Arc, eastern Tibetan Plateau. J Struct Geol 27:119–137

    Article  ADS  Google Scholar 

  • Strom AL (1994) Mechanism of stratification and abnormal crushing of rockslide deposits. In: Proceedings of the 7th International Congress of the International Association of Engineering Geology

  • Sun L, Liu Q, Abdelaziz A, Tang X, Grasselli G (2022) Simulating the entire progressive failure process of rock slopes using the combined finite-discrete element method. Comput Geotech 141:104557

    Article  Google Scholar 

  • Thompson N, Bennett MR, Petford N (2009) Analyses on granular mass movement mechanics and deformation with distinct element numerical modeling: implications for large-scale rock and debris avalanches. Acta Geotech 4(4):233–247

    Article  Google Scholar 

  • Wang C, Tannant DD, Lilly PA (2003) Numerical analysis of the stability of heavily jointed rock slopes using PFC2D. Int J Rock Mech Min Sci 40(3):415–424

    Article  Google Scholar 

  • Wang YF, Cheng QG, Zhu Q (2012) Inverse grading analysis of deposit from rock avalanches triggered by Wenchuan earthquake. Chin J Rock Mech Rock Eng 31(6):1089–1106

    Google Scholar 

  • Wang B, Wang L, Chen J, Yin F, Wang D, Zhang W, Chen L, Liu H (2014) Triassic three-stage collision in the Paleo-Tethys: constraints from magmatism in the Jiangda–Deqen–Weixi continental margin arc. SW China Gondwana Res 26(2):475–491

    Article  CAS  ADS  Google Scholar 

  • Wang J, Zhang Y, Chen Y, Wang Q, Xiang C, Fu H, Wang P, Zhao JX, Zhao L (2021) Back-analysis of Donghekou landslide using improved DDA considering joint roughness degradation. Landslides 18:1925–1935

    Article  Google Scholar 

  • Wang PF (2015) Study on the formation mechanism and stability of the Suwalong landslide in the upper Jinsha river. China University of Geosciences, Thesis

  • Wu Q, Kulatilake PHSW (2012) REV and its properties on fracture system and mechanical properties, and an orthotropic constitutive model for a jointed rock mass in a dam site in China. Comput Geotech 43:124–142

    Article  Google Scholar 

  • Wu RA, Zhang YS, Guo CB, Yang Z, Ren S, Tong B (2018) Reactivation characteristics and dynamic hazard prediction of an ancient landslide in the east margin of Tibetan Plateau. Environ Earth Sci 77(16):573

    Article  ADS  Google Scholar 

  • Wu LZ, Deng H, Huang RQ, Zhang LM, Guo XG, Zhou Y (2019) Evolution of lakes created by landslide dams and the role of dam erosion: a case study of the Jiajun landslide on the Dadu River, China. Quat Int 503:41–50

    Article  Google Scholar 

  • Wu LZ, Zhao DJ, Zhu JD, Peng JB, Zhou Y (2020a) A Late Pleistocene river-damming landslide, Minjiang River, China. Landslides 17(3–4):433–444

    Article  Google Scholar 

  • Wu Z, Zhang D, Wang S, Liang C, Liang C, Zhao D (2020b) Dynamic-response characteristics and deformation evolution of loess slopes under seismic loads. Eng Geol 267:105507

    Article  Google Scholar 

  • Wu K, Chen N, Hu G, Wang T, Zhang Y, Marcelo S (2021) New insights into the failure mechanism and dynamic process of the Boli landslide, China. Bull Eng Geol Environ 80(3):2131–2148

    Article  Google Scholar 

  • Wu Q, Liu YX, Tang HM, Kang JT, Wang LQ, Li CD, Wang D, Liu ZQ (2023) Experimental study of the influence of wetting and drying cycles on the strength of intact rock samples from a red stratum in the Three Gorges Reservoir area. Engin Geol 314:107013

    Article  Google Scholar 

  • Xu Q, Fan XM, Huang RQ, Westen VC (2009) Landslide dams triggered by the Wenchuan Earthquake, Sichuan Province, southwest China. Bull Eng Geol Environ 68:373–386

    Article  Google Scholar 

  • Zeng Q, Zhang L, Davies T, Yuan G, Xue X, Wei R, Yin Q, Liao Y (2019) Morphology and inner structure of Luanshibao rock avalanche in Litang, China and its implications for long-runout mechanisms. Eng Geol 260:105216

    Article  Google Scholar 

  • Zeng Q, Yuan G, McSaveney M, Ma F, Wei R, Liao L, Du H (2020) Timing and seismic origin of Nixu rock avalanche in southern Tibet and its implications on Nimu active fault. Eng Geol 268:105522

    Article  Google Scholar 

  • Zeng Q, Zhu J, Liao L, Wei R, Ma F, Ma X, Yuan B (2021) High mobility of the channelized ancient Linka rock avalanche within the Bangong - Nujiang suture zone, SE Tibetan Plateau. Eng Geol 282(3):105999

    Article  Google Scholar 

  • Zhan J, Chen J, Zhang W, Han X, Sun X, Bao Y (2018) Mass movements along a rapidly uplifting river valley: an example from the upper Jinsha River, southeast margin of the Tibetan Plateau. Environ Earth Sci 77:634

    Article  ADS  Google Scholar 

  • Zhang W, Wang J, Chen J, Soltanian MR, Dai Z, WoldeGabriel G (2022) Mass-Wasting-Inferred dramatic variability of 130,000-Year Indian summer monsoon intensity from deposits in the Southeast Tibetan Plateau. Geophys Res Lett 49:e2021GL097301

    Article  ADS  Google Scholar 

  • Zhong Z, Yong R, Tang H, Li C, Du S (2020) Experimental studies on the interaction mechanism of landslide stabilizing piles and sandwich-type bedrock. Landslides 18:1369–1386

    Article  Google Scholar 

  • Zhou RJ, Chen GJ, Li Y, Zhou CH, Gong N, He YL, Li XG (2005) Research on active faults in Litang-Batang region, western Sichuan province, and the seismogenic structures of the 1989 Batang M6.7 earthquake swarm. Seismol Geol 27:31–43

    CAS  Google Scholar 

  • Zhou JW, Cui P, Fang H (2013) Dynamic process analysis for the formation of Yangjiagou landslide-dammed lake triggered by the Wenchuan earthquake, China. Landslides 10(3):331–342

    Article  Google Scholar 

  • Zhou X, Sheng Q, Leng X, Fu X, Cui Z (2017) Viscous artificial boundary for seismic dynamic time-history analysis with granular discrete element method and its application. Chin J Rock Mech Rock Eng 36(4):928–939

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Project of China (No. 2019YFC1509702), the National Natural Science Foundation of China (NSFC) (No. 42077258), and the Opening Fund of Xinjiang Key Laboratory of Geohazard Prevention (Nos. XKLGP2022K04, XKLGP2022K05).

Author information

Authors and Affiliations

Authors

Contributions

Yanyan Li, Rui Wang, Siyu Wei and Lili Han wrote the main manuscript text and Yifeng Hu prepared figures 1-6. All authors reviewed the manuscript.

Corresponding author

Correspondence to Siyu Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, R., Wei, S. et al. Potential failure mechanism and movement process of an ancient river-damming landslide in the SE Qinghai–Tibet Plateau. Environ Earth Sci 83, 119 (2024). https://doi.org/10.1007/s12665-024-11426-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-024-11426-3

Keywords

Navigation