Skip to main content

Advertisement

Log in

Implementation of random forest, adaptive boosting, and gradient boosting decision trees algorithms for gully erosion susceptibility mapping using remote sensing and GIS

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Gullying is one of the problems that cause soil degradation in semi-arid areas and should be predicted to mitigate its damaging effects. Three machine learning models have been employed in this work to map the susceptibility to gully erosion in the N'fis river basin in the Moroccan High Atlas. Utilizing high-resolution images from Google Earth alongside fieldwork data, we digitized 434 gully erosion events to construct the comprehensive inventory map. These data were divided into two groups: training (70%) and test (30%). Based on the literature research and the multicollinearity test, 11 conditioning factors were selected. The receiver operating characteristic (ROC) approach and other statistical measures were used to quantify the model's accuracy. The study findings highlight the significance of drainage density, slope, NDVI, and distance from roads as crucial factors influencing gully erosion in the study area. Among the evaluated machine learning algorithms, the random forest (RF) model exhibited the highest performance, with an area under the curve (AUC) value of 0.932. It was followed by adaptive boosting (AB) with an AUC of 0.902 and gradient-boosted decision trees (GBDT) with an AUC of 0.893. The maps produced reveal that the southern and central regions of the study area have the classes of very high and high gully erosion susceptibility. The outputs of the current study can be used by decision-makers to improve prevention planning and mitigation techniques against gully erosion damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data

The data that support the findings of this study are available on request from the corresponding author.

References

  • Abdo HG (2021) Estimating water erosion using RUSLE GIS and remote sensing in Wadi-Qandeel river basin Lattakia Syria. Proc Indian Natl Sci Acad 87(3):514–523. https://doi.org/10.1007/s43538-021-00047-0

    Article  Google Scholar 

  • Abdo HG (2022) Assessment of landslide susceptibility zonation using frequency ratio and statistical index: a case study of Al-Fawar basin, Tartous, Syria. Int J Environ Sci Technol 19(4):2599–2618. https://doi.org/10.1007/s13762-021-03322-1

    Article  Google Scholar 

  • Abdo HG, Almohamad H, Al Dughairi AA, Ali SA, Parvin F, Elbeltagi A, Costache R, Mohammed S, Al-Mutiry M, Alsafadi K (2022) Spatial implementation of frequency ratio statistical index and index of entropy models for landslide susceptibility mapping in Al-Balouta river basin, Tartous Governorate, Syria. Geosci Lett 9(1). https://doi.org/10.1186/s40562-022-00256-5

  • Ait Naceur H, Igmoullan B, Namous M, Bourouay O, Ouayah M (2021) A comparative study of different statistical methods for flood susceptibility assessment: a case study of N'fis basin, Marrakesh High Atlas (Morocco). Disaster Adv 14(10):1–14. https://doi.org/10.25303/1410da0114

  • Ait Naceur H, Igmoullan B, Namous M, Amrhar M, Bourouay O, Ouayah M, Jadoud M (2022) A comparative study of different machine learning methods coupled with GIS for landslide susceptibility assessment: a case study of N’fis basin, Marrakesh High Atlas (Morocco). Arab J Geosci 15(11):1100

    Article  Google Scholar 

  • Aouragh MH, Ijlil S, Essahlaoui N, Essahlaoui A, El Hmaidi A, El Ouali A, Mridekh A (2023) Remote sensing and GIS-based machine learning models for spatial gully erosion prediction: a case study of Rdat watershed in Sebou basin Morocco. Remote Sens Appl Soc Environ 30:100939. https://doi.org/10.1016/j.rsase.2023.100939

    Article  Google Scholar 

  • Arabameri A, Pradhan B, Rezaei K, Yamani M, Pourghasemi HR, Lombardo L (2018a) Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function–logistic regression algorithm. Land Degrad Dev 29(11):4035–4049

    Article  Google Scholar 

  • Arabameri A, Pradhan B, Pourghasemi HR, Rezaei K, Kerle N (2018b) Spatial modelling of gully erosion using GIS and R programing: a comparison among three data mining algorithms. Appl Sci 8(8):1369

    Article  Google Scholar 

  • Arabameri A, Pradhan B, Rezaei K (2019a) Gully erosion zonation mapping using integrated geographically weighted regression with certainty factor and random forest models in GIS. J Environ Manag 232:928–942

    Article  Google Scholar 

  • Arabameri A, Pradhan B, Rezaei K, Conoscenti C (2019b) Gully erosion susceptibility mapping using GIS-based multi-criteria decision analysis techniques. CATENA 180:282–297

    Article  Google Scholar 

  • Arabameri A, Chen W, Loche M, Zhao X, Li Y, Lombardo L, Bui DT (2020) Comparison of machine learning models for gully erosion susceptibility mapping. Geosci Front 11(5):1609–1620

    Article  Google Scholar 

  • Azedou A, Lahssini S, Khattabi A, Meliho M, Rifai N (2021) A Methodological comparison of three models for gully erosion susceptibility mapping in the rural municipality of El Faid (Morocco). Sustainability 13:682. https://doi.org/10.3390/su13020682

    Article  CAS  Google Scholar 

  • Balamurugan G, Ramesh V, Touthang M (2016) Landslide susceptibility zonation mapping using frequency ratio and fuzzy gamma operator models in part of NH-39, Manipur, India. Nat Hazards 84:465–488

    Article  Google Scholar 

  • Bouramtane T, Hilal H, Rezende-Filho AT, Bouramtane K, Barbiero L, Abraham S, Morarech M (2022) Mapping gully erosion variability and susceptibility using remote sensing, multivariate statistical analysis, and machine learning in South Mato Grosso, Brazil. Geosciences 12(6):235

    Article  ADS  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Cao L, Wang Y, Liu C (2021) Study of unpaved road surface erosion based on terrestrial laser scanning. CATENA 199:105091

    Article  Google Scholar 

  • Castillo C, Gómez JA (2015) A century of gully erosion research: urgency, complexity and study approaches. Earth Sci Rev 160:300–319

    Article  ADS  Google Scholar 

  • Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A (2019) An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ 651:2087–2096

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chuma GB, Mugumaarhahama Y, Mond JM, Bagula EM, Ndeko AB, Lucungu PB, Schmitz S (2023) Gully erosion susceptibility mapping using four machine learning methods in Luzinzi watershed, eastern Democratic Republic of Congo. Phys Chem Earth Parts a/b/c 129:103295

    Article  Google Scholar 

  • Conoscenti C, Angileri S, Cappadonia C, Rotigliano E, Agnesi V, Märker M (2014) Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy). Geomorphology 204:399–411

    Article  ADS  Google Scholar 

  • Deng H, Wu X, Zhang W, Liu Y, Li W, Li X, Zhou P, Zhuo W (2022) Cartographie de la sensibilité aux glissements de terrain à l’échelle de l’unité de pente basée sur le modèle de forêt aléatoire dans les zones de vallées profondes. Remote Sens 14:4245. https://doi.org/10.3390/rs14174245

    Article  ADS  Google Scholar 

  • Dev VA, Eden MR (2019) Formation lithology classification using scalable gradient boosted decision trees. Comput Chem Eng 128:392–404

    Article  CAS  Google Scholar 

  • Du GL, Zhang YS, Iqbal J, Yang ZH, Yao X (2017) Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China. J Mt Sci 14(2):249–268

    Article  Google Scholar 

  • Eloudi H, Reddad H, Hssaisoune M, Estrany J, Krimissa S, Elaloui A, Bouchaou L (2022) Assessing the performance of MCDM, statistical, and machine learning ensemble models for gully sensitivity mapping in a semi-arid context. Geocarto Int 37(27):17435–17464. https://doi.org/10.1080/10106049.2022.2129818

    Article  ADS  Google Scholar 

  • Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  MathSciNet  Google Scholar 

  • Gayen A, Pourghasemi HR, Saha S, Keesstra S, Bai S (2019) Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Sci Total Environ 668:124–138

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ghosh A, Maiti R (2021) Soil erosion susceptibility assessment using logistic regression, decision tree and random forest: study on the Mayurakshi river basin of Eastern India. Environ Earth Sci 80(8):1–16

    Article  Google Scholar 

  • Gideon D, Mustafa FB, Victor I (2021) The application of an expert knowledge-driven approach for assessing gully erosion susceptibility in the subtropical Nigerian savannah. Singap J Trop Geogr 42(1):107–131

    Article  Google Scholar 

  • Gómez-Gutiérrez Á, Conoscenti C, Angileri SE, Rotigliano E, Schnabel S (2015) Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: advantages and limitations. Nat Hazards 79(1):291–314

    Article  Google Scholar 

  • Gourfi A, Daoudi L, Shi Z (2018) The assessment of soil erosion risk, sediment yield and their controlling factors on a large scale: example of Morocco. J Afr Earth Sci 147:281–299

    Article  Google Scholar 

  • Hateffard F, Mohammed S, Alsafadi K, Enaruvbe GO, Heidari A, Abdo HG, Rodrigo-Comino J (2021) CMIP5 climate projections and RUSLE-based soil erosion assessment in the central part of Iran. Sci Rep 11(1). https://doi.org/10.1038/s41598-021-86618-z

  • He Q, Jiang Z, Wang M, Liu K (2021) Landslide and wildfire susceptibility assessment in Southeast Asia using ensemble machine learning methods. Remote Sens 13(8):1572

    Article  ADS  Google Scholar 

  • Hembram TK, Paul GC, Saha S (2019) Comparative analysis between morphometry and geo-environmental factor-based soil erosion risk assessment using weight of evidence model: a study on Jainti River Basin, Eastern India. Environ Process 6(4):883–913

    Article  Google Scholar 

  • Hitouri S, Varasano A, Mohajane M, Ijlil S, Essahlaoui N, Ali SA, Teodoro AC (2022) Hybrid machine learning approach for gully erosion mapping susceptibility at a watershed scale. ISPRS Int J Geo-Inf 11(7):401

    Article  Google Scholar 

  • Hosseinalizadeh M, Kariminejad N, Chen W, Pourghasemi HR, Alinejad M, Behbahani AM, Tiefenbacher JP (2019) Gully headcut susceptibility modeling using functional trees, Naïve Bayes tree, and random forest models. Geoderma 342:1–11

    Article  ADS  Google Scholar 

  • Huang D, Su L, Fan H, Zhou L, Tian Y (2022) Identification of topographic factors for gully erosion susceptibility and their spatial modelling using machine learning in the black soil region of Northeast China. Ecol Indic 143:109376

    Article  Google Scholar 

  • Jaafari A, Janizadeh S, Abdo HG, Mafi-Gholami D, Adeli B (2022) Understanding land degradation induced by gully erosion from the perspective of different geoenvironmental factors. J Environ Manag 315:115181

    Article  Google Scholar 

  • Javidan N, Kavian A, Pourghasemi HR, Conoscenti C, Jafarian Z (2019) Gully erosion susceptibility mapping using multivariate adaptive regression splines—replications and sample size scenarios. Water 11(11):2319

    Article  Google Scholar 

  • Lana JC, Castro PD, Lana CE (2022) Assessing gully erosion susceptibility and its conditioning factors in southeastern Brazil using machine learning algorithms and bivariate statistical methods: a regional approach. Geomorphology 402:108159

    Article  Google Scholar 

  • Lei X, Chen W, Avand M, Janizadeh S, Kariminejad N, Shahabi H, Mosavi A (2020) GIS-based machine learning algorithms for gully erosion susceptibility mapping in a semi-arid region of Iran. Remote Sens 12(15):2478

    Article  ADS  Google Scholar 

  • Liang Z, Wang C, Khan KUJ (2021) Application and comparison of different ensemble learning machines combining with a novel sampling strategy for shallow landslide susceptibility mapping. Stoch Environ Res Risk Assess 35(6):1243–1256

    Article  Google Scholar 

  • Liu C, Fan H, Jiang Y, Ma R, Song S (2023a) Gully erosion susceptibility assessment based on machine learning—a case study of watersheds in Tuquan County in the black soil region of Northeast China. CATENA 222:106798

    Article  Google Scholar 

  • Liu G, Arabameri A, Santosh M, Nalivan OA (2023b) Optimizing machine learning algorithms for spatial prediction of gully erosion susceptibility with four training scenarios. Environ Sci Pollut Res 1–18

  • Markhi A, Laftouhi N, Grusson Y, Soulaimani A (2019) Assessment of potential soil erosion and sediment yield in the semi-arid N′ fis basin (High Atlas, Morocco) using the SWAT model. Acta Geophys 67:263–272

    Article  ADS  Google Scholar 

  • Markhi A, Laftouhi NE, Soulaimani A, Fniguire F (2015) Quantification et evaluation de l'erosion hydrique en utilisant le modèle rusle et déposition intégrée dans un sig. application dans le bassin versant n'fis dans le haut atlas de Marrakech (MAROC). Eur Sci J 11(29)

  • Meliho M, Khattabi A, Mhammdi N (2018) A GIS-based approach for gully erosion susceptibility modelling using bivariate statistics methods in the Ourika watershed, Morocco. Environ Earth Sci 77(18):1–14

    Article  Google Scholar 

  • Merghadi A, Yunus AP, Dou J, Whiteley J, ThaiPham B, Bui DT, Abderrahmane B (2020) Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth Sci Rev 207:103225

    Article  Google Scholar 

  • Micheletti N, Foresti L, Robert S, Leuenberger M, Pedrazzini A, Jaboyedoff M, Kanevski M (2014) Machine learning feature selection methods for landslide susceptibility mapping. Math Geosci 46(1):33–57

    Article  Google Scholar 

  • Mohebzadeh H, Biswas A, Rudra R, Daggupati P (2022) Machine learning techniques for gully erosion susceptibility mapping: a review. Geosciences 12(12):429

    Article  ADS  Google Scholar 

  • Mokarram M, Negahban S, Abdeldjalil B (2021) GIS-based fuzzy-analytic network process (FAHP), fuzzy-analytic hierarchy process (FANP) methods and feature selection algorithm (FSA) to determine earthquake-prone areas in Kermanshah Province. Environ Earth Sci 80:1–16

    Article  Google Scholar 

  • Naceur HA, Abdo HG, Igmoullan B, Namous M, Almohamad H, Al Dughairi AA, Al-Mutiry M (2022) Performance assessment of the landslide susceptibility modelling using the support vector machine, radial basis function network, and weight of evidence models in the N’fis river basin, Morocco. Geosci Lett 9(1):1–20

    Article  Google Scholar 

  • Namous M, Hssaisoune M, Pradhan B, Lee CW, Alamri A, Elaloui A, Tagma T (2021) Spatial prediction of groundwater potentiality in large semi-arid and karstic mountainous region using machine learning models. Water 13(16):2273

    Article  Google Scholar 

  • Nhu VH, Janizadeh S, Avand M, Chen W, Farzin M, Omidvar E, Lee S (2020a) GIS-based gully erosion susceptibility mapping: a comparison of computational ensemble data mining models. Appl Sci 10(6):2039

    Article  CAS  Google Scholar 

  • Nhu VH, Shirzadi A, Shahabi H, Singh SK, Al-Ansari N, Clague JJ, Ahmad BB (2020b) Shallow landslide susceptibility mapping: a comparison between logistic model tree, logistic regression, Naïve Bayes tree, artificial neural network, and support vector machine algorithms. Int J Env Res Pub He 17(8):2749

    Article  Google Scholar 

  • Ogbonna JU (2012) Understanding gully erosion vulnerability in Old Imo State using geographic information system and geostatistics. Am J Geogr Inf Syst 1(3):66–71

    Google Scholar 

  • Olivier G, Van De Wiel MJ, De Clercq WP (2023) Intersecting views of gully erosion in South Africa. Earth Surf Process Landf 48(1):119–142

    Article  ADS  Google Scholar 

  • Pal SC, Arabameri A, Blaschke T, Chowdhuri I, Saha A, Chakrabortty R, Band SS (2020) Ensemble of machine-learning methods for predicting gully erosion susceptibility. Remote Sens 12(22):3675

    Article  ADS  Google Scholar 

  • Pal S, Paul S, Debanshi S (2022) Identifying sensitivity of factor cluster based gully erosion susceptibility models. Environ Sci Pollut R 1–20

  • Park S, Kim J (2019) Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance. Appl Sci 9:942. https://doi.org/10.3390/app9050942

    Article  Google Scholar 

  • Pham BT, Bui DT, Prakash I, Dholakia MB (2017) Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA 149:52–63

    Article  Google Scholar 

  • Pham BT, Prakash I, Bui DT (2018) Spatial prediction of landslides using a hybrid machine learning approach based on random subspace and classification and regression trees. Geomorphology 303:256–270

    Article  ADS  Google Scholar 

  • Pourghasemi HR, Yousefi S, Kornejady A, Cerdà A (2017) Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling. Sci Total Environ 609:764–775

    Article  ADS  CAS  PubMed  Google Scholar 

  • Rahmati O, Haghizadeh A, Pourghasemi HR, Noormohamadi F (2016) Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison. Nat Hazards 82(2):1231–1258

    Article  Google Scholar 

  • Rahmati O, Tahmasebipour N, Haghizadeh A, Pourghasemi HR, Feizizadeh B (2017) Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology 298:118–137

    Article  ADS  Google Scholar 

  • Rahmati O, Kalantari Z, Ferreira CS, Chen W, Soleimanpour SM, Kapović-Solomun M, Kazemabady NK (2022) Contribution of physical and anthropogenic factors to gully erosion initiation. CATENA 210:105925

    Article  Google Scholar 

  • Razavi-Termeh SV, Sadeghi-Niaraki A, Choi SM (2020) Gully erosion susceptibility mapping using artificial intelligence and statistical models. Geomat Nat Hazards Risk. 11(1):821–844

    Article  Google Scholar 

  • Roy J, Saha S (2022) Ensemble hybrid machine learning methods for gully erosion susceptibility mapping: K-fold cross validation approach. Artif Intell Geosci 3:28–45

    Google Scholar 

  • Roy P, Pal SC, Janizadeh S, Chakrabortty R, Islam, ARMT, Chowdhuri I, Saha A (2022) Evaluation of climate change impacts on future gully erosion using deep learning and soft computational approaches. Geocarto Int 1–31

  • Saha A, Pal SC, Chowdhuri I, Islam ARMT, Chakrabortty R, Roy P (2022) Application of neural network model-based framework approach to identify gully erosion potential hotspot zones in sub-tropical environment. Geocarto Int 1–27

  • Shit PK, Bhunia GS, Pourghasemi HR (2020) Gully erosion susceptibility mapping based on Bayesian weight of evidence. Gully erosion studies from India and surrounding regions. Springer, Cham, pp 133–146

    Chapter  Google Scholar 

  • Simonneaux V, Cheggour A, Deschamps C, Mouillot F, Cerdan O, Le Bissonnais Y (2015) Land use and climate change effects on soil erosion in a semi-arid mountainous watershed (High Atlas, Morocco). J Arid Environ 122:64–75

    Article  Google Scholar 

  • Singh N, Chakrapani GJ (2015) ANN modelling of sediment concentration in the dynamic glacial environment of Gangotri in Himalaya. Environ Monit Assess 187(8):1–14

    Article  Google Scholar 

  • Soleimanpour SM, Pourghasemi HR, Zare M (2021) A comparative assessment of gully erosion spatial predictive modeling using statistical and machine learning models. CATENA 207:105679

    Article  Google Scholar 

  • Tairi A, Elmouden A, Bouchaou L, Aboulouafa M (2021) Mapping soil erosion–prone sites through GIS and remote sensing for the Tifnout Askaoun watershed, southern Morocco. Arab J Geosci 14(9):1–22

    Article  Google Scholar 

  • Tien Bui D, Shirzadi A, Shahabi H, Chapi K, Omidavr E, Pham BT, Lee S (2019) A novel ensemble artificial intelligence approach for gully erosion mapping in a semi-arid watershed (Iran). Sensors 19(11):2444

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhang G, Wang C, Xing S (2022) Assessment of the gully erosion susceptibility using three hybrid models in one small watershed on the Loess Plateau. Soil till Res 223:105481

    Article  Google Scholar 

  • Wei Y, Liu Z, Zhang Y, Cui T, Guo Z, Cai C, Li Z (2022) Analysis of gully erosion susceptibility and spatial modelling using a GIS-based approach. Geoderma 420:115869

    Article  ADS  Google Scholar 

  • Wu Y, Ke Y, Chen Z, Liang S, Zhao H, Hong H (2020) Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. CATENA 187:104396

    Article  Google Scholar 

  • Yang A, Wang C, Pang G, Long Y, Wang L, Cruse RM, Yang Q (2021) Gully erosion susceptibility mapping in highly complex terrain using machine learning models. ISPRS Int J Geo-Inf 10(10)

  • Yang H, Shi C, Cao J (2022) A field investigation on gully erosion and implications for changes in sediment delivery processes in some tributaries of the Upper Yellow River in China. ISPRS Int J Geoinf 11(5):288

    Article  Google Scholar 

  • Zabihi M, Mirchooli F, Motevalli A, Darvishan AK, Pourghasemi HR, Zakeri MA, Sadighi F (2018) Spatial modelling of gully erosion in Mazandaran Province, northern Iran. CATENA 161:1–13

    Article  Google Scholar 

  • Zakerinejad R, Maerker M (2015) An integrated assessment of soil erosion dynamics with special emphasis on gully erosion in the Mazayjan basin, southwestern Iran. Nat Hazards 79(1):25–50

    Article  Google Scholar 

  • Zhang P, Yao W, Liu G, Xiao P (2019) Experimental study on soil erosion prediction model of loess slope based on rill morphology. CATENA 173:424–432

    Article  Google Scholar 

  • Zhao G, Mu X, Wen Z, Wang F, Gao P (2013) Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad Dev 24(5):499–510

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia, for funding this research. (IFKSURC-1-7316).

Funding

This research was funded by the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia, project no. (IFKSURC-1-7316).

Author information

Authors and Affiliations

Authors

Contributions

HAN, HGA, II and MN: Methodology, HAN, HGA, II and MN: Software, II, HAN, MN and FA: Formal analysis and investigation. MN, II, HAN and HGA: visualization, HAN, MN, HGA and FA: Writing—original draft preparation, HGA, HAN, II, MN, JA and FA: Writing—review and editing, HGA, MN, II, JA and FA: Supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hazem Ghassan Abdo.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait Naceur, H., Abdo, H.G., Igmoullan, B. et al. Implementation of random forest, adaptive boosting, and gradient boosting decision trees algorithms for gully erosion susceptibility mapping using remote sensing and GIS. Environ Earth Sci 83, 121 (2024). https://doi.org/10.1007/s12665-024-11424-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-024-11424-5

Keywords

Navigation