Skip to main content
Log in

Urban mine tailings and efflorescent crusts: unveiling health implications in Nacozari de García, Mexico

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Nacozari de García situated in Mexico's second most significant porphyry Cu district hosts the largest urban historical mine tailings in Sonora. This study aimed to comprehensively evaluate mineralogy, bioaccessibility (Al, Mn, Cu, Zn, and Cd), and associated risks in this region. Three distinct mine tailings, their corresponding efflorescent crusts, and street dust were subjected to thorough investigation. X-ray diffraction analysis unveiled the presence of silicates originating from neighboring lithologies. In the mine tailings, secondary minerals like jarosite and gypsum indicated extensive oxidation due to environmental exposure. Efflorescent minerals, including chalcanthite, hexahydrate, szomolnokite, poitevinite, and halotrichite, were identified, reflecting the influence of the semiarid climate. Among the samples analyzed, the highest elemental concentrations emerged within the efflorescent crusts (Al = 55,584 μg/g; Mn = 36,619 μg/g; Cu = 90,366 μg/g; Zn = 35,391 μg/g; Cd = 137 μg/g). Subsequently, the 10 μm fraction of mine tailings displayed lower concentrations (Al = 19,651 μg/g; Mn = 914 μg/g; Cu = 5626 μg/g; Zn = 936 μg/g; Cd = 3.2 μg/g). Regarding bioaccessibility, the efflorescent crusts exhibited notably high oral bioaccessibility percentages (> 80%) for Cu, Zn, and Mn, potentially leading to non-carcinogenic effects upon oral exposure. However, lung exposure did not present significant risks for the studied elements. Despite generally low Cd concentrations, the enrichment of Cd in efflorescent crusts raised concerns about possible carcinogenic effects. These results underscore the potential human health hazards associated with efflorescent crusts, emphasizing the urgency of implementing appropriate measures to mitigate potential risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data is included in the manuscript.

References

  • Akcil A, Koldas S (2006) Acid mine drainage (AMD): causes, treatment and case studies. J Clean Prod 14(12–13):1139–1145. https://doi.org/10.1016/j.jclepro.2004.09.006

    Article  Google Scholar 

  • Anawar HM (2015) Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. J Environ Manag 158:111–121. https://doi.org/10.1016/j.jenvman.2015.04.045

    Article  CAS  Google Scholar 

  • ATSDR (2004) Agency for Toxic Substances & Disease Registry. In: Dorsey A, Ingerman L, Swarts S (eds) Toxicological profile for copper. U.S. Department of Health and Human Services, ATSDR toxicological profiles, p 202

  • ATSDR (2022) CDC, PHAGM All. Public Health Assessment Guidance Manual (PHAGM) Public Health Assessment Guidance Manual (PHAGM)

  • ATSDR (2023) Agency for Toxic Substances & Disease Registry. Calculating hazard quotients and cancer risk estimates. https://www.atsdr.cdc.gov/pha-guidance/conducting_scientific_evaluations/epcs_and_exposure_calculations/hazardquotients_cancerrisk.html. Accessed 18 Aug 2023

  • Balasoiu CF, Zagury GJ, Deschenes L (2001) Partitioning and speciation of chromium, copper, and arsenic in CCA-contaminated soils: influence of soil composition. Sci Total Environ 280(1–3):239–255. https://doi.org/10.1016/s0048-9697(01)00833-6

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bosso ST, Enzweiler J, Angélica RS (2008) Lead bioaccessibility in soil and mine wastes after immobilization with phosphate. Water Air Soil Pollut 195:257–273

    Article  ADS  CAS  Google Scholar 

  • Bourliva A, Papadopoulou L, da Silva EF, Patinha C (2020) In vitro assessment of oral and respiratory bioaccesibility of trace elements of environmental concern in Greek fly ashes: assessing health risk via ingestion and inhalation. Sci Total Environ 704:135324. https://doi.org/10.1016/j.scitotenv.2019.135324

    Article  ADS  CAS  PubMed  Google Scholar 

  • Buzatu A, Dill HG, Buzgar N et al (2016) Efflorescent sulfates from Baia Sprie mining area (Romania)—acid mine drainage and climatological approach. Sci Total Environ 542:629–641. https://doi.org/10.1016/j.scitotenv.2015.10.139

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chang X, Li YX (2020) Lead distribution in urban street dust and the relationship with mining, gross domestic product GDP and transportation and health risk assessment. Environ Pollut 262:114307

    Article  CAS  PubMed  Google Scholar 

  • Cheryl BB (1997) Toxicity summary for aluminium, Risk Assessment Information System (RAIS). https://rais.ornl.gov/tox/profiles/aluminum.html. Accessed 18 Mar 2023

  • Cruz-Hernández Y, Santana-Silva A, Villalobos M et al (2019) Assesment of a simple extraction method to determine the bioaccesibility of potentially toxic Tl, As, Pb, Cu, Zn and Cd in soils contaminated by mining-metallurgical waste. Rev Int Contam Ambient 35(4):849–868. https://doi.org/10.20937/rica.2019.35.04.07

    Article  Google Scholar 

  • Csavina J, Field J, Taylor MP et al (2012) A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci Total Environ 433:58–73. https://doi.org/10.1016/j.scitotenv.2012.06.013

    Article  ADS  CAS  PubMed  Google Scholar 

  • de la O-Villanueva M, Meza-Figueroa D, Maier R et al (2013) Procesos erosivos en jales de la presa I de Nacozari de García, Sonora y su efecto en la dispersión de contaminantes. Bol Soc Geol Mex 65:27–38

    Article  Google Scholar 

  • De Miguel E, Iribarren I, Chacon E et al (2007) Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 66(3):505–513. https://doi.org/10.1016/j.chemosphere.2006.05.065

    Article  ADS  CAS  PubMed  Google Scholar 

  • Del Rio-Salas R, Ayala-Ramírez Y, Loredo-Portales R et al (2019) Mineralogy and geochemistry of rural road dust and nearby mine tailings: a case of ignored pollution hazard from an abandoned mining site in semiarid zone. Nat Resour Res 28:1485–1503. https://doi.org/10.1007/s11053-019-09472-x

    Article  CAS  Google Scholar 

  • Duggan MJ, Inskip MJ (1985) Childhood exposure to lead in surface dust and soil: a community health problem. Public Health Rev 13(1–2):1–54

    CAS  PubMed  Google Scholar 

  • Ettler V, Vítková M, Mihaljevič M et al (2014) Dust from Zambian smelters: mineralogy and contaminant bioaccessibility. Environ Geochem Health 36(5):919–933. https://doi.org/10.1007/s10653-014-9609-4

    Article  CAS  PubMed  Google Scholar 

  • Eulises CSJ, González-Chávez MDCA, Carrillo-González R et al (2021) Bioaccessibility of potentially toxic elements in mine residue particles. Environ Sci Process Impacts 23(2):367–380. https://doi.org/10.1039/d0em00447b

    Article  CAS  PubMed Central  Google Scholar 

  • Gómez Landa JR (2014) Caracterización geológica, estructural, geoquímica y metalogenética de la brecha Pilares, Sonora, México. Master's thesis. Universidad de Sonora, p 93

  • Guerrero C, Lorenzetti R (2021) Use of composite samples and NIR spectroscopy to detect changes in SOC contents. Geoderma 396:115069

    Article  ADS  CAS  Google Scholar 

  • Guney M, Bourges CMJ, Chapuis RP, Zagury GJ (2017) Lung bioaccessibility of As, Cu, Fe, Mn, Ni, Pb, and Zn in fine fraction (< 20 μm) from contaminated soils and mine tailings. Sci Total Environ 579:378–386. https://doi.org/10.1016/j.scitotenv.2016.11.086

    Article  ADS  CAS  PubMed  Google Scholar 

  • Historia de Nacozari de García (2023) Historia breve de la mina de Pilares de Nacozari. https://historiadenacozari.org/cronica/historia-breve-de-la-mina-de-pilares-de-nacozari/. Accessed 19 Aug 2023

  • Hou S, Zheng N, Tang L, Ji X, Li Y, Hua X (2019) Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environ Int 128:430–437

    Article  CAS  PubMed  Google Scholar 

  • Hubbard C, Snyder R (1988) RIR—measurement and use in quantitative XRD. Powder Diffr 3(2):74–77. https://doi.org/10.1017/S0885715600013257

    Article  ADS  CAS  Google Scholar 

  • Jambor JL, Nordstrom DK, Alpers CN (2000) Metal-sulfate salts from sulfide mineral oxidation. Rev Mineral Geochem 40(1):303–350. https://doi.org/10.2138/rmg.2000.40.6

    Article  CAS  Google Scholar 

  • Khorasanipour M (2015) Environmental mineralogy of Cu-porphyry mine tailings, a case study of semi-arid climate conditions, Sarcheshmeh mine, SE Iran. J Geochem Explor 153:40–52

    Article  CAS  Google Scholar 

  • Kim CS, Wilson KM, Rytuba JJ (2011) Particle-size dependence on metal (loid) distributions in mine wastes: implications for water contamination and human exposure. Appl Geochem 26(4):484–495. https://doi.org/10.1016/j.apgeochem.2011.01.007

    Article  ADS  CAS  Google Scholar 

  • La Rotta AM, Torres MH (2017) Explotación minera y sus impactos ambientales en la salud. El caso de Potosí en Bogotá. Saúde em Debate 41(112): 77–91

  • Lam EJ, Gálvez ME, Cánovas M, Montofré IL, Rivero D, Faz A (2016) Evaluation of metal mobility from copper mine tailings in northern Chile. Environ Sci Pollut Res 23:11901–11915. https://doi.org/10.1007/s11356-016-6405-y

    Article  CAS  Google Scholar 

  • Lam EJ, Urrutia J, Bech J, Herrera C, Montofré ÍL, Zetola V, Álvarez AA, Cánovas M (2023) Heavy metal pollution index calculation in geochemistry assessment: a case study on Playa Las Petroleras. Environ Geochem Health 45(2):409–426. https://doi.org/10.1007/s10653-022-01272-2

    Article  CAS  PubMed  Google Scholar 

  • Li K, Liang T, Wang L, Yang Z (2015) Contamination and health risk assessment of heavy metals in road dust in Bayan Obo Mining Region in Inner Mongolia, North China. J Geog Sci 25:1439–1451

    Article  Google Scholar 

  • Li Y, Padoan E, Ajmone-Marsan F (2021) Soil particle size fraction and potentially toxic elements bioaccessibility: a review. Ecotoxicol Environ Saf 209:111806. https://doi.org/10.1016/j.ecoenv.2020.111806

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Gao T, Xia Y, Wang Z, Liu C, Li S, Lv Y et al (2020) Using Zn isotopes to trace Zn sources and migration pathways in paddy soils around mining area. Environ Pollut 267:115616

    Article  CAS  PubMed  Google Scholar 

  • Loredo-Portales R, Bustamante-Arce J, González-Villa HN, Moreno-Rodríguez V, Del Rio-Salas R, Molina-Freaner F, González-Méndez B, Archundia-Peralta D (2020) Mobility and accessibility of Zn, Pb, and As in abandoned mine tailings of northwestern Mexico. Environ Sci Pollut Res 27:26605–26620. https://doi.org/10.1007/s11356-020-09051-1

    Article  CAS  Google Scholar 

  • Lottermoser BG (2010) Sulfidic mine wastes. In: Mine wastes, pp 43–117) Springer, Berlin. https://doi.org/10.1007/978-3-642-12419-8

  • Lottermoser B (2017) Environmental indicators in metal mining. Springer International Publishing.https://doi.org/10.1007/978-3-319-42731-7

  • Meza-Figueroa D, Maier RM, de la O-Villanueva M, et al (2009) The impact of unconfined mine tailings in residential areas from a mining town in a semiarid environment: Nacozari, Sonora, Mexico. Chemosphere 77(1):140–147. https://doi.org/10.1016/j.chemosphere.2009.04.068

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Monneron-Gyurits M, Soubrand M, Joussein E et al (2020) Investigating the relationship between speciation and oral/lung bioaccessibility of a highly contaminated tailing: contribution in health risk assessment. Environ Sci Pollut Res 27:40732–40748. https://doi.org/10.1007/s11356-020-10074-x

    Article  CAS  Google Scholar 

  • Morales-Pérez A, Moreno-Rodríguez V, Del Rio-Salas R, Imam NG, González-Méndez B, Pi-Puig T, Loredo-Portales R et al (2021) Geochemical changes of Mn in contaminated agricultural soils nearby historical mine tailings: Insights from XAS, XRD and SEP. Chem Geol 573:120217

    Article  Google Scholar 

  • Moreno-Rodríguez V, Del Rio-Salas R, Adams DK et al (2015) Historical trends and sources of TSP in a Sonoran desert city: can the North America Monsoon enhance dust emissions? Atmos Environ 110:111–121. https://doi.org/10.1016/j.atmosenv.2015.03.049

    Article  ADS  CAS  Google Scholar 

  • Nduka JK, Kelle HI, Amuka JO (2019) Health risk assessment of cadmium, chromium and nickel from car paint dust from used automobiles at auto-panel workshops in Nigeria. Toxicol Rep 6:449–456. https://doi.org/10.1016/j.toxrep.2019.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peña Ortega MI (2017) Evaluación del potencial de contaminación y propuesta cuantitativa del volumen erosionado de los depósitos de jales abandonados de Nacozari de García, Sonora, México. Bachelors thesis. Universidad de Sonora, p 67

  • Peña-Ortega M, Del Rio-Salas R, Valencia-Sauceda J et al (2019) Environmental assessment and historic erosion calculation of abandoned mine tailings from a semiarid zone of northwestern Mexico: insights from geochemistry and unmanned aerial vehicles. Environ Sci Pollut Res 26:26203–26215. https://doi.org/10.1007/s11356-019-05849-w

    Article  CAS  Google Scholar 

  • Pope CA III, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 56(6):709–742

    Article  CAS  PubMed  Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71. https://doi.org/10.1107/S0021889869006558

    Article  ADS  CAS  Google Scholar 

  • Rodrigues DB, Marques MC, Hacke A, Loubet Filho PS, Cazarin CBB, Mariutti LRB (2022) Trust your gut: bioavailability and bioaccessibility of dietary compounds. Curr Res Food Sci 5:228–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero FM, Armienta MA, Gutiérrez ME, Villaseñor G (2008) Factores geológicos y climáticos que determinan la peligrosidad y el impacto ambiental de jales mineros. Rev Int Contam Ambient 24(2):43–54

    CAS  Google Scholar 

  • Root RA, Hayes SM, Hammond CM et al (2015) Toxic metal (loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate. Appl Geochem 62:131–149. https://doi.org/10.1016/j.apgeochem.2015.01.005

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • RSEI (2023) Risk-Screening Environmental Indicators. The Toxicity Weighting Spreadsheet Version 2.3.11. US Environmental Protection Agency

  • Ruby MV (2004) Bioavailability of soil-borne chemicals: abiotic assessment tools. Hum Ecol Risk Assess 10(5):647–656. https://doi.org/10.1080/10807030490484291

    Article  CAS  Google Scholar 

  • Ruby MV, Davis A, Schoof R et al (1996) Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30(2):422–430. https://doi.org/10.1021/es950057z

    Article  ADS  CAS  Google Scholar 

  • Santos AE, Cruz-Ortega R, Meza-Figueroa D et al (2017) Plants from the abandoned Nacozari mine tailings: evaluation of their phytostabilization potential. PeerJ 5:e3280. https://doi.org/10.7717/peerj.3280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher BA, Shines KC, Burton JV, Papp ML (1990) A comparison of soil sample homogenization techniques. US Environmental Protection Agency, Office of Research and Development p 49

  • Sipos P, Németh T, Kis VK et al (2018) Potentially toxic metal-bearing phases in urban dust and suspended particulate matter: the case of Budapest, Hungary. Urban Pollut Sci Manag. https://doi.org/10.1002/9781119260493.ch28

    Article  Google Scholar 

  • Smith KS, Huyck HL (1999) An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals. Environ Geochem Miner Depos 6:29–70

    Google Scholar 

  • Soltani N, Keshavarzi B, Moore F et al (2021) In vitro bioaccessibility, phase partitioning, and health risk of potentially toxic elements in dust of an iron mining and industrial complex. Ecotoxicol Environ Saf 212:111972. https://doi.org/10.1016/j.ecoenv.2021.111972

    Article  CAS  PubMed  Google Scholar 

  • Sullivan P, Agardy FJ, Clark JJ (2005) The environmental science of drinking water. Elsevier. https://doi.org/10.1016/B978-0-7506-7876-6.X5001-5

    Article  Google Scholar 

  • Taylor AA, Tsuji JS, McArdle ME et al (2023) Recommended reference values for risk assessment of oral exposure to copper. Risk Anal 43(2):211–218. https://doi.org/10.1111/risa.13906

    Article  PubMed  Google Scholar 

  • USEPA (1987) Integrated Risk Information System (IRIS). Chemical Assessment Summary: Cadmium; CASRN 7440-43-9, Last revision March 31, 1987, U.S. Environmental Protection Agency (EPA)-National Center for Environmental Assessment, Washington, D.C.

  • USEPA (1989) Integrated Risk Information System (IRIS). Chemical Assessment Summary: Cadmium; CASRN 7440-43-9, Last revision October 1st, 1989, U.S. Environmental Protection Agency (EPA)-National Center for Environmental Assessment, Washington, D.C.

  • USEPA (1993) Manganese; CASRN 7439-96-5. Integrated Risk Information System (IRIS), Chemical Assessment Summary. U.S. Environmental Protection Agency, National Center for Environmental Assessment

  • USEPA (1995) Manganese; CASRN 7439-96-5. Integrated Risk Information System (IRIS), Chemical Assessment Summary. U.S. Environmental Protection Agency, National Center for Environmental Assessment

  • USEPA (1996) Soil Screening Guidance: Technical Background Document. U.S. Environmental Protection Agency. EPA/540/R-95/128

  • USEPA (2002) Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, Appendix A-Generic SSLs for the Residential and Commercial/industrial Scenarios

  • USEPA (2004) Lead; CASRN 7439-92-1. Integrated Risk Information System (IRIS), Chemical Assessment Summary. U.S. Environmental Protection Agency, National Center for Environmental Assessment

  • USEPA (2005) Guidelines for Carcinogen Risk Assessment. R. A. Forum. Washington, D.C., U.S. Environmental Protection, p 166

  • USEPA (2005) Zinc; CASRN 7440-66-6. Integrated Risk Information System (IRIS), Chemical Assessment Summary. U.S. Environmental Protection Agency, National Center for Environmental Assessment

  • USEPA (2011) Exposure Factors Handbook 2011 Edition (Final Report). U.S. Environmental Protection Agency, Washington, DC. EPA/600/R-09/052F

  • USEPA (2017) Exposure Factors Handbook Chapter 5 (Update): Soil and Dust Ingestion. U.S. EPA Office of Research and Development, Washington, DC, EPA/600/R-17/384F, 2017

  • Von Thaden-Ugalde HA, Robles C (2020) La actividad minera del siglo XX en el Valle de Oaxaca: Riesgos de salud pública de hoy. Rev Int Contam Ambient 36(1):165–175. https://doi.org/10.20937/RICA.2020.36.53209

    Article  Google Scholar 

  • Wang L, Cui X, Cheng H et al (2015) A review of soil cadmium contamination in China including a health risk assessment. Environ Sci Pollut Res 22:16441–16452. https://doi.org/10.1007/s11356-015-5273-1

    Article  CAS  Google Scholar 

  • Zheng J, Noller B, Huynh T, Ng J, Taga R, Diacomanolis V, Harris H (2021) How the population in Mount Isa is living with lead exposure from mining activities. Extr Ind Soc 8(1):123–134

    Google Scholar 

Download references

Acknowledgements

This investigation was financially supported by Project IN113519-(PAPIIT-UNAM), CESUES-PTC-035 (NPCT-PRODEP), and CONAHCYT-300409. We are thankful to MA Alegría and J.F. Martínez-Rodríguez for field and laboratory support. The authors are thankful to the CONAHCYT National Laboratories calls and to the Laboratorio Nacional de Geoquímica y Mineralogía-LANGEM.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (VMR, RDS, and RLP); funding acquisition (VMR, RDS, and RLP); investigation (HDNI, VMR, RDS, RLP, and DRM); project administration (VMR, RDS, and RLP); resources (VMR, RDS, RLP, and TP); validation (RLP and TP); visualization (DRM and RDS); writing—original draft (HDNI, VMR, RDS, RLP, and DGM); writing, review, and editing (VMR, RDS, RLP, and TP). All authors commented on previous versions of the manuscript, and read and approved the final version of it.

Corresponding author

Correspondence to V. Moreno-Rodríguez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 49 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-Rodríguez, V., Del Rio-Salas, R., Loredo-Portales, R. et al. Urban mine tailings and efflorescent crusts: unveiling health implications in Nacozari de García, Mexico. Environ Earth Sci 83, 116 (2024). https://doi.org/10.1007/s12665-023-11406-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-023-11406-z

Keywords

Navigation